The largest database of trusted experimental protocols

Hydrazones

Hydrazones are a class of organic compounds containing the characteristic functional group R1R2C=NNH2, where R1 and R2 are alkyl, aryl, or other organic groups.
They are widely used in organic synthesis, medicinal chemistry, and materials science due to their versatile reactivity and structural diversity.
Hydrazones can undergo a variety of transformations, such as condensation, oxidation, and reduction, making them valuable intermediates in the synthesis of heterocyclic compounds, pharmaceuticals, and other functional materials.
Reasearchers can utilize PubCompare.ai's AI-driven platform to optimize their hydrazone research by locating the best protocols from literature, pre-prints, and patents, while conducting accurate comparisons to enhance reproducibility and accurracy.
This tool can help take the guesswork out of hydrazone experimentation.

Most cited protocols related to «Hydrazones»

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2013
2-Mercaptoethanol B-Cell Leukemia 2 Family Proteins Bax protein (53-86) Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone Cell Lines Cells Digitonin Edetic Acid Egtazic Acid Fluorescence HEPES Hydrazones mesoxalonitrile Mitochondrial Inheritance Neoplasm Metastasis Oligomycins Peptides Proteins Recombinant Proteins Succinate Sulfoxide, Dimethyl Trehalose
All samples were assessed using a microplate reader spectrophotometer (InfiniteM200, Tecan, Austria). All the determinations were duplicated, and the interassay coefficient of variation was in the range indicated by the kit's manufacturer.
The malondialdehyde (MDA) levels were analysed spectrophotometrically using the modified thiobarbituric acid-reactive substance method to determine the amount of lipid peroxidation in plasma. The measurement of thiobarbituric acid-reactive substances (TBARS) by a commercial assay kit (Cayman Chemical, USA) allows a rapid photometric detection at 535 nm of the thiobarbituric acid malondialdehyde (TBAMDA) adduct, as previously reported [7 (link)]. A linear calibration curve was computed from pure MDA-containing reactions.
The protein carbonyl (PC) content, an index of protein oxidation, was determined utilizing a commercial kit (Cayman Chemical, USA) through the reaction of 2,4-dinitrophenylhydrazine (DNPH) and carbonyls. This reaction forms a Schiff base producing the correspondent hydrazone. The latter was analysed by spectrophotometry, reading the absorbance signal in the 360–385 nm range. Values were normalized to the total protein concentration in the final pellet (absorbance reading at 280 nm) to consider protein loss during the washing steps.
8-OH-2-deoxyguanosine (8-OH-dG), established as a marker of oxidative DNA damage, was assessed by using a commercially available enzyme immune assay EIA kit (Cayman Chemical, USA). The EIA employs an anti-mouse IgG-coated plate and a tracer consisting of an 8-OH-dG-enzyme conjugate, while the sample 8-OH-dG concentration was determined using an 8-OH-dG standard curve. Meanwhile, samples and standards were read at a wavelength of 412 nm.
Nitrite (NO2)+nitrate (NO3) (NOx) level determination was performed by the spectrophotometric method to Griess reagent, utilizing a commercial colorimetric assay kit (Cayman Chemical, USA).
Nitric oxide synthase (iNOS) expression was assessed by using a commercial assay EIA kit (cat no. EH0556; FineTest, Wuhan China). This assay was based on sandwich enzyme-linked immune-sorbent assay technology and carried out according to the manufacturer's instructions, while NOS2/iNOS protein synthesis was determined using a standard curve. Samples and standards were read at a wavelength of 450 nm.
Interleukin-6, interleukin-1β, and interleukin-10 (IL-6, IL-1β, and IL-10, respectively) levels were determined by using commercially available enzyme immune assay kits (R&D Systems, USA; Cayman Chemical, USA; and BioVendor, Czech Republic, respectively) following the manufacturer's instruction. The assays are based on a double-antibody sandwich technique. The signal was spectrophotometrically measured.
Full text: Click here
Publication 2022
8-Hydroxy-2'-Deoxyguanosine anti-IgG Biological Assay Caimans Colorimetry Deoxyguanosine dinitrophenylhydrazine Enzyme Assays Enzymes Griess reagent Hydrazones IL1B protein, human IL10 protein, human Immunoglobulins Interleukin-1 beta Lipid Peroxidation Malondialdehyde Mus Nitrates Nitric Oxide Synthase Nitric Oxide Synthase Type II Nitrites NOS2A protein, human Oxidative DNA Damage Photometry Plasma Protein Biosynthesis Proteins Schiff Bases Spectrophotometry thiobarbituric acid Thiobarbituric Acid Reactive Substances
Mitochondrial respiration was measured with a Clark-type electrode (Strathkelvin, Glasgow, UK) at 37°C during magnetic stirring in incubation buffer containing in mmol/l: 125 KCl, 10 MOPS, 2 MgCl2, 5 KH2PO4, 0.2 EGTA with 5 glutamate and 5 malate as substrates for complex I. The oxygen electrode was calibrated using a solubility coefficient of 217 nmol O2/ml at 37°C.
For the measurement of complex I respiration, suspended mitochondria (corresponding to a protein amount of 50 µg) were added to 0.5 ml of incubation buffer. After 2 min, 1 mmol/l ADP was added and ADP-stimulated respiration was measured over 2–3 min.
Hereafter, mitochondria were used to either measure complex IV respiration and maximal uncoupled oxygen uptake in the respiration chamber, or incubation buffer containing mitochondria was taken from the respiration chamber to measure ATP production or ROS production, respectively.
Complex IV respiration was stimulated by adding N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD, 300 µmol/l) and ascorbate (3 mmol/l), which donates electrons to cytochrome oxidase via the reduction of cytochrome c. Maximal uncoupled oxygen uptake was measured in the presence of 30 nmol/l carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP) [37 (link)].
Publication 2016
Buffers Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone Cell Respiration cytochrome c'' Egtazic Acid Electrons Glutamates Hydrazones Magnesium Chloride malate mesoxalonitrile Mitochondria morpholinopropane sulfonic acid NADH Dehydrogenase Complex 1 Oxidase, Cytochrome-c Oxygen Staphylococcal Protein A tetramethyl-p-phenylenediamine

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2012
Aldehydes Amides Bromides Carbodiimides Cell Culture Techniques Cell Lines Cells Culture Media Diagnosis Fetal Bovine Serum Gemcitabine Gemcitabine Hydrochloride gemcitabine triphosphate High-Performance Liquid Chromatographies HOE 33342 Hydrazones Lung Cancer LysoTracker Malignant Neoplasms Methanol Molecular Probes Mus Penicillins perchlorate polyethylene glycol 2000 Pyrenes Red DND-99 Solvents stearic acid Streptomycin Sulfate, Sodium Dodecyl Synthetic Drugs tert-butyl carbazate tetrabutylammonium chloride tetrahydrofuran triphosphate

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2011
Antibodies, Anti-Idiotypic dinitrophenylhydrazine Hydrazones Immunoblotting Muscle Tissue Proteins Ryanodine Receptor 1

Most recents protocols related to «Hydrazones»

Not available on PMC !

Example 2

Tertiary propargylamine bridges were introduced into the peptide by initial incorporation of aza-propargylglycine and ε-N-alkyl-lysine residues into the GHRP-6 peptide sequence, followed by copper-catalyzed macrocyclization using an aldehyde linchpin. The A3-macrocyclization was examined immediately after introduction of the azapropargylglycine residue, as well as after completing the peptide sequence. To seek a diversity-oriented synthesis, two strategies were employed, in which an ε-N-alkyl-lysine residue was introduced respectively at the C-terminal and a central residue of the peptide sequence. With the ε-N-alkyl-lysine residue at the C-terminal, the macrocycle ring-size diversity was varied by azapropargyiglycine position scanning, in which the azapropargylglycyl residue was marched systematically to the N-terminal of the GHRP-6 sequence prior to macrocyclization with formaldehyde. With the ε-N-alkyl-lysine residue centred in the sequence, the influence of various & amino substituents was examined on macrocyclization.

The important step for the effective diversity-oriented synthesis of cyclic azapeptides by A3-macrocyclization was development of solid-phase methods to install the azapropargyiglycine residue and ε-N-alkyl-lysine residue into the peptide sequence prior to the copper-catalyzed macrocyclization using an aldehyde linchpin. The azapropargyiglycine can be inserted by submonomer synthesis of azapeptides on solid phase.[13] The ε-N-alkylated lysine was prepared in solution and then coupled to the resin-bound peptide; however, solid-phase ε-N-alkylation of lysine was also performed by Mitsunobu chemistry on the corresponding ε-N-o-nitrobenzenesulfonyl (o-NBS) amine.[20]

As a proof-of-concept of the A3-macrocyclization, cyclic azatripeptide 8 was pursued by placing ε-N-methyl lysine at the peptide C-terminal and inserting aza-propargyiglycine at the i+2 position. Prior to attachment to Rink amide resin, Fmoc-Lys(methyl, o-NBS)—OH 1 was synthesized from Boc-Lys-OH in solution. After Fmoc group removals and elongation with Fmoc-D-Phe-OH using DIC and HOBt, dipeptide 2a was acylated by the active carbazate prepared from benzophenone hydrazone and N,N′-disuccinimidyl carbonate (DSC) to provide semicarbazone 3a.[14] Propargylation was performed using Cs2CO3 (300 mol %) and proparyl bromide (600 mol %) to furnish the aza-propargyiglycine 4a in good purity as accessed by LCMS analysis of a cleaved aliquot. After removal of the o-NBS-group with 2-mercaptoethanol and DBU, secondary ε-N-methylamine 5a was ready to test the A3-macrocyclization. Macrocycle 6a was prepared successfully by treating aza-peptide 5a with CuI (20 mol %) and 37% aqueous formaldehyde (600 mol %) in DMSO at rt for 24 h, as verified by LCMS analysis. Elongation of macrocycle 6a to cyclic GHRP-6 analog 8 was accomplished by removal of the semicarbazone with hydroxylamine hydrochloride in pyridine, acylation of the resulting semicarbazide 7a using the symmetric anhydride from treating Fmoc-Ala-OH with DIC, and standard solid-phase peptide synthesis, deprotection and resin cleavage. GHRP-6 macrocycle 8 was isolated in 3.5% overall yield after purification by preparative HPLC. Employing the same strategy, macrocycle 9 was obtained in 2.4% overall yield.

[Figure (not displayed)]

With macrocyclic GHRP-6 analogs 8 and 9 in hand, ring-size scope was investigated by systematically moving the azapropargylglycine residue towards the N-terminal of the sequence. Moreover, the ε-N-alkyl-lysine residue was prepared on solid phase by a method designed to expand the diversity of the ε-amine substituent. After coupling Fmoc-Lys(o-NBS)—OH 10[19] to RINK amide resin and peptide elongation, semicarbazones 11a-d were synthesized. Chemoselective modification of the ε-N-o-(NBS)amine nitrogen was achieved by employing Mitsunobu chemistry to alkylate the former. Treatment of sulphonamide 11a-d with allyl alcohol, PPh3, and diisopropyl azodicarboxylate (DIAD) provided selectively ε-N-(allyl)lysinyl peptides 12a-d as verified by LCMS analysis of cleaved aliquots. Subsequently, propargylation of semicarbazone was performed using Cs2CO3 (300 mol %) and proparyl bromide (600 mol %) to yield aza-propargylglycine peptides 13a-d. A3-Macrocyclization was then performed using the same conditions as discussed above to provide respectively 16-, 19, 21, and 24-membered macrocycles 15a-d as verified by LCMS analysis. After cyclization, semicarbazone removal, semicarbazide acylation, peptide elongation and resin cleavage were performed as described above to afford cyclic GHRP-6 analogs 17 and 18 after purification by preparative HPLC (Table 1). Coupling to semicarbazide macrocycles 16c and 16d was however unsuccessful in the syntheses of the corresponding cyclic GHRP-6 analogs. Steric hindrance inhibited apparently, the coupling to the semicarbazide of the larger ring-sizes. Semicarbazide 16d was however cleaved from resin to give cyclic aza-hexapeptide 19 with a N-terminal semicarbazide after purification by preparative HPLC.

[Figure (not displayed)]
[Figure (not displayed)]
[Figure (not displayed)]

[Figure (not displayed)]
[Figure (not displayed)]

Failure to elongate semicarbazides 16c and 16d after cyclization promoted investigation of a strategy featuring elongation of the complete linear peptide prior to A3-macrocyclization as the penultimate step before simultaneous deprotection and resin cleavage. Semicarbazone 13a was thus treated with hydroxylamine hydrochloride to liberate the semicarbazide 20a, and the linear peptide was elongated as described for its cyclic counterpart above. Aza-hexapeptide 21a was treated with DBU and 2-mercaptoethanol to selectively remove the o-NBS group. Subsequently, aza-hexapeptide 23a was effectively converted to macrocycle 17 using the standard A3-macrocyclization conditions. Resin cleavage gave cyclic azapeptide 17 in about 2-fold higher yield (1.2%) than the earlier approach, involving peptide elongation after cyclization.

Employing the peptide elongation/A3-macrocyclization approach, linear peptides 22b-d were also successfully converted into macrocyclic aza-GHRP-6 analogs 18, 24 and 25. Cyclic azapeptides 24 and 25 were respectively prepared with N-terminal alanine residues to avoid racemization during coupling to the semicarbazide with histidine, and to add an N-terminal basic amine that may favor biological activity.

The diversity of the ε-amine substituent was explored by the synthesis of cyclic azatetrapeptides 30-32 employing different alcohols as electrophiles in the Mitsunobu reaction: methanol, allyl alcohol and isopropyl alcohol. An ε-N-alkylated lysine was inserted in the peptide sequence to replace the tryptophan residue and an azapropargylglycine was placed at the i+3 position to replace the histidine residue in the GHRP-6 sequence. Cyclic analog 33 was synthesized with an additional alanine in the N-terminal for comparison with analog 31 to study the importance of the N-terminal basic amine.

[Figure (not displayed)]

Cyclic azapeptide GHRP-6 analogs were synthesized by the A3-macrocyclization method in yields and purities suitable for biological evaluation (Table 1).

TABLE 1
Yields and purity of the cyclic azapeptide GHRP-6 analogs
CyclicSyntheticIsolated
AnalogApproachYield (%)Purity[a]HRMS
8I3.5   99%809.4201(809.4206)
9I2.4   99%924.4627(924.4628)
17I and (II)0.5(1.5)99%835.4376(835.4362)
18I and (II)0.4(1.1)99%950.4787(950.4784)
19I0.5   94%884.4549(884.4566)
24II0.9   99%769.4140(769.4144)
25II1.1   97%955.4942(955.4937)
26II2.0%99%997.5031(997.5043)
27II1.6%99%926.4658(926.4671)
31I1.5   96%826.4718(826.4723)
32I1.2   97%828.4875(828.4879)
33II0.9   94%897.5092(897.5094)
34II2.5%98%939.5186(939.5199)
35II1.4%96%868.4804(868.4828)
[a]Determined by LCMS analysis as described above.
Synthesis of Cyclic Analogs MPE-110, MPE-111, MPE-074 and MPE-048

Solution-Phase Chemistry

Ornithine Building Block Synthesis

[Figure (not displayed)]

Fmoc-Orn(o-NBS)—OH (RGO1):

Fmoc-Orn(Boc)-OH (2.02 g, 4.44 mmol) was dissolved in CH2Cl2 (30 mL) treated with TFA (20 mL) stirred at room temperature for 3 hours, and the volatiles were removed by rotary evaporation. The resulting yellow oil was co-evaporated with toluene to give a residue that was dissolved in THF (40 mL) and water (40 mL) and treated with iPr2NEt (7.70 mL, 44.2 mmol) and o-NBSCl (1.13 g, 5.08 mmol) in one portion. The reaction was stirred at room temperature for 3 hours, diluted with EtOAc (100 mL) and sequentially washed with aqueous HCl (1 M, 100 mL×3), water (100 mL) and brine (100 mL). The organic layer was dried over MgSO4 and the volatiles were removed by rotary evaporation to give sulfonamide RGO1 (2.4 g, quant.) as a light yellow solid. The amino acid was used without further purification.

1H NMR (300 MHz, DMSO) δ 8.10 (t, J=5.6 Hz, 1H), 8.03-7.92 (m, 2H), 7.92-7.81 (m, 4H), 7.72 (d, J=7.4 Hz, 2H), 7.61 (d, J=8.0 Hz, 1H), 7.41 (t, J=7.2 Hz, 2H), 7.32 (t, J=7.1 Hz, 2H), 4.34-4.16 (m, 3H), 3.89 (td, J=8.7, 4.6 Hz, 1H), 2.90 (q, J=6.3 Hz, 2H), 1.73 (s, 1H), 1.65-1.43 (m, 3H). 13C NMR (75 MHz, DMSO) δ 173.7, 156.1, 147.8, 143.8, 140.7, 134.0, 132.7, 132.6, 129.4, 127.7, 127.1, 125.3, 124.4, 120.1, 65.6, 53.5, 46.7, 42.3, 27.9, 26.0. LCMS (10-90% MeOH containing 0.1% formic acid over 10 min) Rt=11.04 min. ESI-MS m/z calcd for C26H26N3O8S+ [M+H]+ 540.1, found 540.1. Melting point: 108-110° C.

Solid-Phase Chemistry

Fmoc-based peptide synthesis was performed using standard conditions (W. D. Lubell, J. W. Blankenship, G. Fridkin, and R. Kaul (2005) “Peptides.” Science of Synthesis 21.11, Chemistry of Amides. Thieme, Stuttgart, 713-809) on an automated shaker using polystyrene Rink amide resin. The loading was calculated from the UV absorbance for Fmoc-deprotection after the coupling of the first amino acid. Couplings of amino acids (3 equiv.) were performed in DMF using DIC (3 equiv.) and HOBt (3 equiv.) for 3-6 hours. Fmoc-deprotections were performed by treating the resin with 20% piperidine in DMF for 30 min. The resin was washed after each coupling and deprotection step sequentially with DMF (×3), MeOH (×3) THF (×3) and CH2Cl2 (×3).

Lysine as AA1

[Figure (not displayed)]

Fmoc-Lys(o-NBS)-Rink Amide Resin RGO7:

On Rink amide resin (3.00 g) in a syringe fitted with a Teflon™ filter, Fmoc removal was performed by treating the resin with a solution of 20% piperidine in DMF over 30 min. The resin was filtered and washed sequentially with DMF (×3), MeOH (×3) and CH2Cl2 (×3). Fmoc-Lys(o-NBS)—OH (1.62 g, 2.93 mmol) was dissolved in DMF (20 mL) and treated with DIC (0.7 mL, 4.52 mmol) and HOBt (611 mg, 4.52 mmol), stirred for 3 min. and added to the syringe containing the resin. The mixture was shaken for 14 hours. The resin was then filtered and sequentially washed with DMF (×3), MeOH (×3) and CH2Cl2 (×3). The resin was dried and the loading was measured at 0.345 mmol/g resin.

[Figure (not displayed)]

Fmoc-Lys(o-NBS, Allyl)-Rink Amide Resin RGO8:

Vacuum dried Fmoc-Lys(o-NBS)-resin RGO7 (0.441 mmol) was placed in a syringe fitted with a Teflon™ filter, suspended in THF (dry, 5 mL) and treated sequentially with solutions of allyl alcohol (206 μL, 3.03 mmol) in THF (dry, 1 mL), PPh3 (397 mg, 1.51 mmol) in THF (dry, 1 mL), and DIAD (298 μL, 1.51 mmol) in THF (dry, 1 mL). The mixture in the syringe was shaken for 90 min. The resin was filtered and sequentially washed with DMF (×3), MeOH (×3), THF (×3) and CH2Cl2 (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete allylation: LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=8.65 min. ESI-MS m/z calcd for C30H33N4O7S+ [M+H]+ 593.2, found 593.2.

[Figure (not displayed)]

Boc-Ala-D-Pra-Ala-Trp(Boc)-D-Phe-Lys(o-NBS, Allyl)-Rink Amide Resin RGO99:

LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=5.73 min. ESI-MS m/z calcd for C46H57N10O10S+ [M−2Boc+H]+941.4, found 941.4.

[Figure (not displayed)]

Boc-Ala-L-Pra-Ala-Trp(Boc)-D-Phe-Lys(o-NBS, Allyl)-Rink Amide Resin RGO100:

LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=5.77 min. ESI-MS m/z calcd for C46H57N10O10S+ [M−2Boc+H]+941.4, found 941.4.

[Figure (not displayed)]

Boc-Ala-D-Pra-D-Trp(Boc)-Ala-Trp-D-Phe-Lys(o-NBS, Allyl)-Rink Amide Resin RGO65:

LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=6.48 min. ESI-MS m/z calcd for C57H67N12O11S+ [M−3Boc+H]+1127.5, found 1127.5.

[Figure (not displayed)]

Boc-Ala-L-Pra-D-Trp(Boc)-Ala-Trp-D-Phe-Lys(o-NBS, Allyl)-Rink Amide Resin RGO66:

LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=6.66 min. ESI-MS m/z calcd for C57H67N12O11S+ [M−3Boc+H]+1127.5, found 1127.5.

[Figure (not displayed)]

Boc-Ala-D-Pra-Ala-Trp(Boc)-D-Phe-Lys(Allyl)-Rink Amide Resin RGO104:

o-NBS-protected hexapeptide RGO99 (˜600 mg, 0.156 mmol) in a syringe fitted with a Teflon™ filter was swollen in DMF (5 mL) and treated with DBU (210 μL, 1.40 mmol) and 2-mercaptoethanol (50 μL, 0.71 mmol). The mixture in the syringe was shaken for 1 h. The resin was filtered and sequentially washed with DMF (×3), MeOH (×3), THF (×3) and CH2Cl2 (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete o-NBS-removal: LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=1.50 min. ESI-MS m/z calcd for C40H54N9O6+ [M−2Boc+H]+ 756.4, found 756.4.

[Figure (not displayed)]

Boc-Ala-L-Pra-Ala-Trp(Boc)-D-Phe-Lys(Allyl)-Rink Amide Resin RGO105:

o-NBS-protected hexapeptide RGO100 (˜600 mg, 0.14 mmol) in a syringe fitted with a Teflon™ filter was swollen in DMF (5 mL) and treated with DBU (210 μL, 1.40 mmol) and 2-mercaptoethanol (50 μL, 0.71 mmol). The mixture in the syringe was shaken for 1 h. The resin was filtered and sequentially washed with DMF (×3), MeOH (×3), THF (×3) and CH2Cl2 (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete o-NBS-removal: LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=1.51 min. ESI-MS m/z calcd for C40H54N9O6+ [M−2Boc+H]+ 756.4, found 756.4.

[Figure (not displayed)]

Boc-Ala-D-Pra-D-Trp(Boc)-Ala-Trp(Boc)-D-Phe-Lys(allyl)-Rink Amide Resin RGO69:

o-NBS-protected heptapeptide RGO65 (˜300 mg, 0.10 mmol) in a syringe fitted with a Teflon™ filter was swollen in DMF (6 mL) and treated with DBU (150 μL, 1.00 mmol) and 2-mercaptoethanol (35 μL, 0.50 mmol). The mixture in the syringe was shaken for 1 h. The resin was filtered and sequentially washed with DMF (×3), MeOH (×3), THF (×3) and CH2Cl2 (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete o-NBS-removal: LCMS (20-80% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=4.79 min. ESI-MS m/z calcd for C51H64N11O7+ [M−3Boc+H]+ 942.5, found 942.5.

[Figure (not displayed)]

Boc-Ala-L-Pra-D-Trp(Boc)-Ala-Trp(Boc)-D-Phe-Lys(Allyl)-Rink Amide Resin RGO70:

o-NBS-protected heptapeptide RGO66 (˜300 mg, 0.09 mmol) in a syringe fitted with a Teflon™ filter was swollen in DMF (6 mL) and treated with DBU (130 μL, 0.87 mmol) and 2-mercaptoethanol (30 μL, 0.43 mmol). The mixture in the syringe was shaken for 1 h. The resin was filtered and sequentially washed with DMF (×3), MeOH (×3), THF (×3) and CH2Cl2 (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete o-NBS-removal: LCMS (20-80% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=5.05 min. ESI-MS m/z calcd for C51H64N11O7+ [M−3Boc+H]+ 942.5, found 942.5.

[Figure (not displayed)]

Cyclic Peptide MPE-110:

Hexapeptide resin RGO104 (˜600 mg, 0.156 mmol) was swollen in DMSO (6 mL) for 30 min in a syringe tube equipped with Teflon™ filter, and stopper, treated with CuI (5.0 mg, 0.03 mmol) and aqueous formaldehyde (70 μL, 0.94 mmol, 37% in H2O), shaken on an automated shaker for 30 h, and filtered. After filtration, the resin was washed sequentially with AcOH/H2O/DMF (5:15:80, v/v/v, ×3), DMF (×3), THF (×3), MeOH (×3), and DCM (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete conversion, and a peak with molecular ion consistent with cyclic hexapeptide MPE-110 was observed: MS m/z calcd for Ca41H54N9O6+ [M+H]+ 768.4, found 768.4.

Resin-bound cyclic peptide MPE-110 was deprotected and cleaved from the support using a freshly made solution of TFA/H2O/TES (95:2.5:2.5, v/v/v, 5 mL) at rt for 2 h. The resin was filtered and rinsed with TFA (5 mL). The filtrate and rinses were concentrated until a crude oil persisted, from which a precipitate was obtained by addition of cold ether (10 mL). After centrifugation (1200 rpm for 10 min), the supernatant was removed and the crude peptide precipitate was taken up in aqueous MeOH (10% v/v) and freeze-dried prior to purification. The resulting light brown fluffy material was purified by preparative HPLC to give cyclic pentapeptide MPE-110 (2.0 mg, 2%) as white fluffy material.

LCMS analysis of cyclic peptide MPE-110 was performed using a linear gradient of a) 10-90% of MeOH containing 0.1% formic acid in H2O (0.1% formic acid) over 10 min, then at 10% MeOH (0.1% formic acid) for 5 min, Rt=4.24 min; b) 10-90% MeCN containing 0.1% formic acid in H2O containing 0.1% formic acid over 10 min, then at 10% MeCN (0.1% formic acid) for 5 min, Rt=1.70 min; HRMS m/z. calcd for C41H54N9O6+ [M+H]+ 768.4192, found 768.4176.

[Figure (not displayed)]

Cyclic Peptide MPE-111:

Hexapeptide resin RGO105 (˜600 mg, 0.14 mmol) was swollen in DMSO (6 mL) for 30 min in a syringe tube equipped with Teflon™ filter, and stopper, treated with CuI (5.0 mg, 0.03 mmol) and aqueous formaldehyde (60 μL, 0.84 mmol, 37% in H2O), shaken on an automated shaker for 30 h, and filtered. After filtration, the resin was washed sequentially with AcOH/H2O/DMF (5:15:80, v/v/v, ×3), DMF (×3), THF (×3), MeOH (×3), and DCM (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete conversion, and a peak with molecular ion consistent with cyclic hexapeptide MPE-111 was observed: MS m/z. calcd for C41H54N9O6+ [M+H]+ 768.4, found 768.4.

Resin-bound cyclic peptide MPE-111 was deprotected and cleaved from the support using a freshly made solution of TFA/H2O/TES (95:2.5:2.5, v/v/v, 5 mL) at rt for 2 h. The resin was filtered and rinsed with TFA (5 mL). The filtrate and rinses were concentrated until a crude oil persisted, from which a precipitate was obtained by addition of cold ether (10 mL). After centrifugation (1200 rpm for 10 min), the supernatant was removed and the crude peptide precipitate was taken up in aqueous MeOH (10% v/v) and freeze-dried prior to purification. The resulting light brown fluffy material was purified by preparative HPLC to give cyclic hexapeptide MPE-111 (2.9 mg, 3%) as white fluffy material.

LCMS analysis of cyclic peptide MPE-111 was performed using a linear gradient of a) 10-90% of MeOH containing 0.1% formic acid in H2O (0.1% formic acid) over 10 min, then at 10% MeOH (0.1% formic acid) for 5 min, Rt=4.50 min; b) 10-90% MeCN containing 0.1% formic acid in H2O containing 0.1% formic acid over 10 min, then at 10% MeCN (0.1% formic acid) for 5 min, Rt=2.03 min; HRMS m/z. calcd for C41H54N9O6+ [M+H]+ 768.4192, found 768.4172.

[Figure (not displayed)]

Cyclic Peptide MPE-074:

Heptapeptide resin RGO69 (˜300 mg, 0.10 mmol) was swollen in DMSO (5 mL) for 30 min in a syringe tube equipped with Teflon™ filter, and stopper, treated with CuI (4.0 mg, 0.02 mmol) and aqueous formaldehyde (50 μL, 0.69 mmol, 37% in H2O), shaken on an automated shaker for 29 h, and filtered. After filtration, the resin was washed sequentially with AcOH/H2O/DMF (5:15:80, v/v/v, ×3), DMF (×3), THF (×3), MeOH (×3), and DCM (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete conversion, and a peak with molecular ion consistent with cyclic heptapeptide MPE-074 was observed: MS m/z calcd for C52H63N11NaO7+ [M+Na]+ 976.5, found 976.4.

Resin-bound cyclic peptide MPE-074 was deprotected and cleaved from the support using a freshly made solution of TFA/H2O/TES (95:2.5:2.5, v/v/v, 5 mL) at rt for 2 h. The resin was filtered and rinsed with TFA (5 mL). The filtrate and rinses were concentrated until a crude oil persisted, from which a precipitate was obtained by addition of cold ether (10 mL). After centrifugation (1200 rpm for 10 min), the supernatant was removed and the crude peptide precipitate was taken up in aqueous MeOH (10% v/v) and freeze-dried prior to purification. The resulting light brown fluffy material was purified by preparative HPLC to give cyclic heptapeptide MPE-074 (0.7 mg, 1%) as white fluffy material.

LCMS analysis of cyclic peptide MPE-074 was performed using a linear gradient of a) 10-90% of MeOH containing 0.1% formic acid in H2O (0.1% formic acid) over 10 min, then at 10% MeOH (0.1% formic acid) for 5 min, Rt=1.72 min; b) 10-90% MeCN containing 0.1% formic acid in H2O containing 0.1% formic acid over 10 min, then at 10% MeCN (0.1% formic acid) for 5 min, Rt=4.24 min; HRMS m/z calcd for C52H63N11NaO7+ [M+Na]+ 976.4804, found 976.4817.

[Figure (not displayed)]

Cyclic Peptide MPE-075:

Heptapeptide resin RGO69 (˜300 mg, 0.09 mmol) was swollen in DMSO (5 mL) for 30 min in a syringe tube equipped with Teflon™ filter, and stopper, treated with CuI (3.0 mg, 0.02 mmol) and aqueous formaldehyde (50 μL, 0.69 mmol, 37% in H2O), shaken on an automated shaker for 29 h, and filtered. After filtration, the resin was washed sequentially with AcOH/H2O/DMF (5:15:80, v/v/v, ×3), DMF (×3), THF (×3), MeOH (×3), and DCM (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete conversion, and a peak with molecular ion consistent with cyclic heptapeptide MPE-075 was observed: MS m/z calcd for C52H64N11O7+ [M+H]+ 954.5, found 954.5.

Resin-bound cyclic peptide MPE-075 was deprotected and cleaved from the support using a freshly made solution of TFA/H2O/TES (95:2.5:2.5, v/v/v, 5 mL) at rt for 2 h. The resin was filtered and rinsed with TFA (5 mL). The filtrate and rinses were concentrated until a crude oil persisted, from which a precipitate was obtained by addition of cold ether (10 mL). After centrifugation (1200 rpm for 10 min), the supernatant was removed and the crude peptide precipitate was taken up in aqueous MeOH (10% v/v) and freeze-dried prior to purification. The resulting light brown fluffy material was purified by preparative HPLC to give cyclic heptapeptide MPE-075 (1.5 mg, 2%) as a white fluffy material.

LCMS analysis of cyclic peptide MPE-075 was performed using a linear gradient of a) 10-90% of MeOH containing 0.1% formic acid in H2O (0.1% formic acid) over 10 min, then at 10% MeOH (0.1% formic acid) for 5 min, Rt=1.89 min; b) 10-90% MeCN containing 0.1% formic acid in H2O containing 0.1% formic acid over 10 min, then at 10% MeCN (0.1% formic acid) for 5 min, Rt=4.47 min; HRMS m/z calcd for C52H64N11O7+ [M+H]+ 954.4985, found 954.4973.

Ornithine as AA1

[Figure (not displayed)]

Fmoc-Orn(o-NBS)-Rink Amide Resin RGO3:

Rink amide resin (2.51 g) was placed in a syringe fitted with a Teflon™ filter. The Fmoc group was removed by treating the resin with a solution of 20% piperidine in DMF over 30 min. The resin was filtered and washed sequentially with DMF (×3), MeOH (×3) and CH2Cl2 (×3). Fmoc-Orn(o-NBS)—OH (1.33 g, 2.46 mmol) was dissolved in DMF (20 mL) and treated with DIC (0.57 mL, 3.68 mmol) and HOBt (494 mg, 3.66 mmol) and stirred for 3 min, before being transferred to the syringe containing the swollen resin, and the mixture was shaken for 14 hours. The resin was filtered and washed sequentially with DMF (×3), MeOH (×3) and CH2Cl2 (×3). The resin was dried and the loading was measured to 0.187 mmol/g resin.

[Figure (not displayed)]

Fmoc-Orn(o-NBS, Allyl)-Rink Amide Resin RGO4:

Vacuum dried Fmoc-Orn(o-NBS)-resin (0.362 mmol) was placed in a syringe fitted with a Teflon™ filter, suspended in THF (dry, 20 mL) and treated sequentially with solutions of allyl alcohol (250 μL, 3.68 mmol) in THF (dry, 1 mL), PPh3 (482 mg, 1.84 mmol) in THF (dry, 2 mL) and DIAD (360 μL, 1.83 mmol) in THF (dry, 1 mL). The resin mixture in the syringe was shaken for 90 min. The resin was filtered and washed sequentially with DMF (×3), MeOH (×3), THF (×3) and CH2Cl2 (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete allylation: LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=8.47 min. ESI-MS m/z calcd for C29H31N4O7S+ [M+H]+ 579.2, found 579.2.

[Figure (not displayed)]

Fmoc-D-Trp(Boc)-Ala-Trp(Boc)-D-Phe-Orn(o-NBS, Allyl)-Rink Amide Resin RGO22:

LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=6.13 min. ESI-MS m/z calcd for C48H55N10O9S+ [M-Fmoc-2Boc+H]+ 947.4, found 947.3.

[Figure (not displayed)]

Fmoc-azaPra-D-Trp(Boc)-Ala-Trp(Boc)-D-Phe-Orn(o-NBS, Allyl)-Rink Amide Resin RGO79:

N′-Propargyl-fluorenylmethylcarbazate (248 mg, 0.849 mmol, prepared by alkylation of fluorenylmethylcarbazate with propargyibromide as —N(R10)— described below) was dissolved in CH2Cl2 (dry, 40 mL) under argon atmosphere. The solution was cooled to 0° C., treated with a 20% solution of phosgene in toluene (1 mL, 1.87 mmol), warmed to rt, stirred 50 min, and the volatiles were removed by rotary evaporation. The residue was re-dissolved in CH2Cl2 (10 mL) and the volatiles were once again removed by rotary evaporation. The resulting white solid was dissolved in CH2Cl2 (dry, 7 mL) and added to the Fmoc-deprotected pentapeptide RGO22 in a syringe fitted with a Teflon™ filter. The mixture in the syringe was shaken for 28 h. The resin was filtered and washed sequentially with DMF (×3), MeOH (×3), THF (×3) and CH2Cl2 (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete coupling: LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=8.26 min. ESI-MS m/z calcd for C52H59N12O10S+ [M-Fmoc-2Boc+H]+ 1043.4, found 1043.3.

[Figure (not displayed)]

Boc-Ala-azaPra-D-Trp(Boc)-Ala-Trp(Boc)-D-Phe-Orn(o-NBS, Allyl)-Rink Amide RGO29:

Coupling onto the semicarbazide RGO79 was performed by using amino acid symmetric anhydrides that were generated in situ (J. Zhang, C. Proulx, A. Tomberg, W. D. Lubell, Org. Lett. 2013, 16, 298-301). The procedure was repeated twice on semicarbazide RGO79. Examination by LCMS of a cleaved resin sample (5 mg) showed complete coupling: LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=6.39 min. ESI-MS m/z calcd for C55H64N13O11S+ [M−3Boc+H]+ 1114.5, found 1114.4.

[Figure (not displayed)]

Boc-Ala-azaPra-D-Trp(Boc)-Ala-Trp(Boc)-D-Phe-Orn(Allyl)-Rink Amide RGO30:

o-NBS-protected hetapeptide RGO29 (˜1 g, 0.2 mmol) in a syringe fitted with a Teflon™ filter was swollen in DMF (6 mL) and DBU (300 μL, 2.01 mmol) and treated with 2-mercaptoethanol (70 μL, 1.00 mmol). The mixture in the syringe was shaken for 1 h. The resin was filtered and washed sequentially with DMF (×3), MeOH (×3), THF (×3) and CH2Cl2 (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete o-NBS-removal: LCMS (30-95% MeOH containing 0.1% formic acid in water containing 0.1% formic acid over 10 min) Rt=4.49 min. ESI-MS m/z calcd for C49H61N12O7+ [M−3Boc+2Na]2+ 487.2, found 487.3.

[Figure (not displayed)]

Cyclic Azapeptide MPE-048:

Azaheptapeptide resin RGO30 (˜1 g, 0.2 mmol) was swollen in DMSO (8 mL) for 30 min in a syringe tube equipped with Teflon™ filter, and stopper, treated with CuI (7.0 mg, 0.04 mmol) and aqueous formaldehyde (90 μL, 1.2 mmol, 37% in H2O), shaken on an automated shaker for 31 h, and filtered. After filtration, the resin was washed sequentially with AcOH/H2O/DMF (5:15:80, v/v/v, ×3), DMF (×3), THF (×3), MeOH (×3), and DCM (×3). Examination by LCMS of a cleaved resin sample (5 mg) showed complete conversion, and a peak with molecular ion consistent with cyclic azaheptapeptide MPE-048 was observed: MS m/z calcd for C50H61N12O7+ [M+H]+ 941.5, found 941.4.

Resin-bound cyclic azapeptide MPE-048 was deprotected and cleaved from the support using a freshly made solution of TFA/H2O/TES (95:2.5:2.5, v/v/v, 5 mL) at rt for 2 h. The resin was filtered and rinsed with TFA (5 mL). The filtrate and rinses were concentrated until a crude oil persisted, from which a precipitate was obtained by addition of cold ether (10 mL). After centrifugation (1200 rpm for 10 min), the supernatant was removed and the crude peptide precipitate was taken up in aqueous MeOH (10% v/v) and freeze-dried prior to purification. The resulting light brown fluffy material was purified by preparative HPLC to give cyclic azaheptapeptide MPE-048 (1.3 mg, 1%) as white fluffy material.

LCMS analysis of cyclic peptide MPE-048 was performed using a linear gradient of a) 10-90% of MeOH containing 0.1% formic acid in H2O (0.1% formic acid) over 10 min, then at 10% MeOH (0.1% formic acid) for 5 min, Rt=1.80 min; b10-90% MeCN containing 0.1% formic acid in H2O containing 0.1% formic acid over 10 min, then at 10% MeCN (0.1% formic acid) for 5 min, Rt=4.30 min; HRMS m/z calcd for C50H60N12O7Na+ [M+Na]+ 963.4600, found 963.4573.

Synthesis of Cyclic Analogs MPE-189, MPE-201, MPE-202, and MPE-203

Synthesis of Carbazates 2 and 3

[Figure (not displayed)]

To a well-stirred solution of fluorenylmethyl carbazate (1, 1 eq., 2.8 g, 11 mmol, prepared according to reference 1) and DIEA (2 eq., 2.85 g, 3.64 mL, 22 mmol) in dry DMF (280 mL) at 0° C., a solution of 3-bromopropyne (0.9 eq., 1.47 g, 1.07 mL, 9.91 mmol, 80 wt. % in toluene) in dry DMF (10 mL) was added drop-wise by cannula over 30 min. The cooling bath was removed. The reaction mixture was allowed to warm to room temperature and stirred for 16 h. The volatiles were evaporated. The residue was partitioned between EtOAc and brine. The aqueous layer was separated and extracted with EtOAc. The combined organic layer was dried over Na2SO4, filtered, and evaporated. The residue was purified by silica gel chromatography eluting with 40% EtOAc in hexane as solvent system to obtain N′-propargyl-fluorenylmethylcarbazate 3 (1.8 g, 62%), as white solid: Rf 0.42 (60% EtOAc); mp 148-149° C.; 1H NMR (500 MHz, DMSO-d6) δ 8.82 (s, 1H), 7.89 (d, J=7.5 Hz, 2H), 7.70 (d, J=7.4 Hz, 2H), 7.50-7.43 (m, 2H), 7.37-7.28 (m, 2H), 4.89 (q, J=4.6 Hz, 1H), 4.29 (d, J=6.9 Hz, 2H), 4.22 (t, J=6.1 Hz, 1H), 3.48 (s, 2H), 3.09 (t, J=2.3 Hz, 1H); 13C NMR (125 MHz, DMSO-d6) δ 156.7, 143.8, 140.7, 127.7 (2C), 127.1 (2C), 125.3 (2C), 120.1 (2C), 81.2, 74.2, 65.6 (2C), 46.6, 39.6 (2C). IR (neat) vmax/cm-1 3304, 3290, 2947, 1699, 1561, 1489, 1448, 1265, 1159, 1021; HRMS m/z calculated for C18H17N2O2 [M+H]+ 293.1285; found 293.1275.

Full text: Click here
Patent 2024
1-hydroxybenzotriazole 1H NMR 2-Mercaptoethanol 5A peptide Acylation Alanine Alcohols Aldehydes Alkylation allyl alcohol Amides Amines Amino Acids Anabolism Anhydrides Argon Atmosphere Bath benzophenone Biopharmaceuticals brine Bromides Cannula carbamylhydrazine carbazate Carbon-13 Magnetic Resonance Spectroscopy Carbonates Cardiac Arrest Centrifugation Chromatography Cold Temperature Copper Cyclic Peptides Cyclization Cytokinesis Dipeptides Ethers Filtration Formaldehyde formic acid Freezing Gel Chromatography growth hormone releasing hexapeptide H 1285 Hexanes High-Performance Liquid Chromatographies Histidine Hydrazones Hydroxylamine Hydroxylamine Hydrochloride Isopropyl Alcohol Light Lincomycin Methanol methylamine N,N-diisopropylethylamine N-propargyl Nitrogen Ornithine Peptide Biosynthesis Peptides Petroleum Phosgene piperidine polypeptide C Polystyrenes propargylamine propargylglycine pyridine pyridine hydrochloride Resins, Plant Rink amide resin Semicarbazides Semicarbazones Silica Gel Silicon Dioxide Solvents Sulfate, Magnesium Sulfonamides Sulfoxide, Dimethyl Syringes Teflon tert-butoxycarbonylalanine Toluene Training Programs Tryptophan Vacuum

EXAMPLE 8

Selectivity is a critical requirement when developing novel therapeutics to minimize off-target risk towards mammalian cells or symbiotic bacteria. Dissipating the PMF is an appealing mechanism to combat TB. Although the collapse of the PMF itself is not bactericidal in most species, the survival of both growing and dormant Mtb necessitates a polarized membrane. PMF is composed of two main parameters: Δψ and ΔpH, where the membrane potential (Δψ) plays a greater role in mycobacteria. To measure the Δψ an assay using a potential-sensitive fluorescent dye [i.e., 3,3′-dipropylthiadicarbocyanine iodide, DiSC3(5)] was conducted. As shown in FIG. 13, the self-quenched dye in a hyperpolarized membrane was released to the solution (i.e., fluorescence increase) upon addition of OCG at 2×MIC, indicating that OCG disrupted Δψ, similarly to the positive control, VER (FIG. 13).

Meanwhile, cyanide m-chlorophenyl hydrazone (CCCP), a commonly used protonophore that collapses both of the components of the PMF did not exhibit concentration-dependent potential changes (FIG. 15). This is largely due to the interference on the fluorescence signals of DiSC3 (5) dye quenched by the ionophore.

Full text: Click here
Patent 2024
Bacteria Biological Assay Carbonyl Cyanide m-Chlorophenyl Hydrazone Cells Cyanides Fluorescence Fluorescent Dyes Genetic Selection Hydrazones Iodides Ionophores Mammals Membrane Potentials Mycobacterium Shock Symbiosis Therapeutics Tissue, Membrane
Hydrogen peroxide (H2O2) content was determined by a peroxidase-dependent assay adopting the method of Okuda et al. (1991) (link). The reaction solution was prepared with crude extract (1 mL), 3- (dimethylamino) benzoic acid (12.5 mM, 0.4 mL), phosphate buffer (37.5 mM, pH 6.5), 3- methyl-2-benzothiazoline hydrazone (0.08 mL). Subsequently, peroxidase (0.02 mL, 0.25 unit) was added as a reaction initiator to the final volume of 1.5 mL at 25°C. The degree of light absorbance was observed for 3 min through a spectrophotometer adjusted at 590 nm.
The thiobarbituric acid reactive substances (TBARS) content was used to signify lipid peroxidation in lemongrass leaves as per Cakmak and Horst (1991) (link). The TBARS concentration was captured as malondialdehyde (MDA) equivalents. For this, leaf tissue (0.5 g) was ground with trichloroacetic acid (0.1% (w/v), 5 ml) with subsequent centrifugation (12,000× g, 5 min). Tetrabutylammonium (0.5% (w/v), 4 mL) in trichloroacetic acid was added to the supernatant followed by incubation and centrifugation. The absorbance was noted at 532 nm and corrected for non-specific turbidity by subtracting the optical density at 600 nm.
Full text: Click here
Publication 2023
Benzoic Acid benzothiazoline Biological Assay Buffers Centrifugation Complex Extracts Cymbopogon nardus Hydrazones Light Lipid Peroxidation Malondialdehyde Peroxidase Peroxide, Hydrogen Phosphates Plant Leaves tetrabutylammonium Thiobarbituric Acid Reactive Substances Tissues Trichloroacetic Acid Vision
Overnight cultures grown in NRPMI containing 1 mM MgCl2, 100 μM CaCl2, and 1 μM FeCl2 were diluted 1:10 in fresh medium before being further diluted 1:100 in 96-well round-bottom plates containing NRPMI supplemented with 1 mM MgCl2, 100 μM CaCl2, and 1 μM FeCl2. Additionally, 1 μM MnCl2 and/or 1 μM ZnSO4 were added as specified. Bacteria were harvested during logarithmic-phase growth (t = 6 h), with approximately 8 mL of cell culture per sample being harvested via centrifugation. The bacterial pellets were washed with 10 mL of 50 mM Tris-HCl (pH 7.5), before resuspension in 1 mL of this buffer. Prior to assaying aldolase activity, the cells were homogenized twice in a FastPrep-24 Beadbeater at 6 m/s for 45 s cycles with 5 min of incubation on ice in between. The cell lysates were centrifuged at 4°C in a microcentrifuge at 14,000 × g for 10 min. The supernatants were collected and used for the aldolase activity assay, which was performed as described by Zhang, et al., with a few modifications (88 (link)). Briefly, aldolase activity was determined by mixing untreated or EDTA-treated supernatants, 2 mM hydrazine, and 2.4 mM fructose-1,6-bisphosphate in 50 mM Tris-HCl (pH 7.5). Glyceraldehyde-3-phosphate produced from fructose-1,6-bisphosphate reacts with hydrazine to form an aldehyde-hydrazone, the production of which was measured via the tracking of the absorbance at 240 nm after 1 h of incubation at 25°C. Supernatants treated with 0.67 nM EDTA were incubated for 10 min at 25°C prior to their use for the aldolase activity assay. When indicated, 1 mM MnCl2 or 1 mM ZnSO4 was added to the reaction. For normalization, the total protein was determined using a BCA assay. Activity was defined as the change of the absorbance at 240 nm per minute per mg of total protein.
Full text: Click here
Publication 2023
Aldehydes Bacteria Biological Assay Buffers Cell Culture Techniques Cells Centrifugation Edetic Acid Fructose Fructosediphosphate Aldolase Glyceraldehyde 3-Phosphate hydrazine Hydrazones Magnesium Chloride manganese chloride Pellets, Drug Proteins Tromethamine
Platelet and PBMCs isolation and oxygen consumption rate (OCR) analyses were performed as previously described [7 (link)]. Briefly, blood samples were obtained in BD Vacutainer tubes containing EDTA after an overnight fast. Platelets were isolated by centrifugation, while PBMCs were isolated by density gradient centrifugation using Lymphoprep™ (Stemcell Technologies), according to the manufacturer’s instructions. Platelet and PBMCs concentrations were determined using the automated cell counter Z1 Coulter Particle Counter (Beckman).
Oxygen consumption rate (OCR) analyses were performed in a Seahorse XFe24 extracellular flux analyzer (Agilent). Purified platelets were seeded (2.5 × 107 cells/well) in 100 µl of Seahorse medium (8.3 g/L DMEM, 1.85 g/L NaCl, 5 mM glucose, 1 mM pyruvate, 2 mM glutamine, 5 mM HEPES, pH 7.4) on XFe24 V7 cell culture plates (Agilent), and the plates centrifuged at 300 g for 10 min to attach the platelets to the bottom of the plate. PBMCs were seeded (4 × 105 cells/well in 100 µl of Seahorse medium) on poly-D-lysine coated XFe24 V7cell culture plates and incubated for 30 min at 37 °C to allow the adhesion to the plate. Seahorse medium (500 µl) was added to each well; plates were kept at 37 °C for approximately 1 h and loaded into the instrument.
Oxygen consumption rate was measured before and after the sequential addition of 2.5 µM oligomycin (ATP synthase inhibitor), cyanide p- (trifluoro-methoxy) phenyl-hydrazone (FCCP, uncoupler 0.5–3 µM) and 2.5/2.5 µM antimycin A/rotenone (complex III and I inhibitors, respectively). The non-mitochondrial oxygen consumption rate (obtained after the addition of antimycin A/rotenone) was subtracted from all measurements. Respiratory parameters were obtained as follows: basal (baseline OCR); ATP-independent (OCR resistant to the addition of oligomycin, proton leak); ATP-dependent (basal—ATP-independent); maximum (OCR obtained after the addition of FCCP); spare respiratory capacity (maximum—basal) [17 (link)]. Respiration was normalized considering cell number.
Full text: Click here
Publication 2023
Antimycin A Blood Blood Platelets Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone Cell Culture Techniques Cell Respiration Cells Centrifugation Centrifugation, Density Gradient Cyanides Edetic Acid Electron Transport Complex III Glucose Glutamine HEPES Hydrazones inhibitors isolation lymphoprep Lysine Mitochondria Nitric Oxide Synthase Oligomycins Oxygen Consumption Poly A Protons Pyruvate Respiratory Rate Rotenone Seahorses Sodium Chloride Stem Cells

Top products related to «Hydrazones»

Sourced in United States, Germany, United Kingdom, Morocco
The OxyBlot Protein Oxidation Detection Kit is a laboratory tool used to detect and analyze oxidative modifications in proteins. It provides a method for the identification and quantification of carbonyl groups introduced into protein side chains as a result of oxidative processes.
Sourced in United States, Germany, United Kingdom, France, Canada, Switzerland, Italy, China, Belgium, Spain, Sao Tome and Principe, Australia, Japan, India, Macao, Brazil, Ireland, Denmark, Austria, Poland, Netherlands, Sweden, Norway, Israel, Hungary, Holy See (Vatican City State), Mexico
HEPES is a buffering agent commonly used in cell culture and biochemical applications. It helps maintain a stable pH environment for biological processes.
Sourced in United States, Germany, United Kingdom, Spain, India, Italy, France, China, Poland, Canada, Australia, Ireland, Hungary, Mexico, Chile, Switzerland, Brazil, Macao, Netherlands, Belgium, New Zealand, Portugal, Czechia, Sweden, Sao Tome and Principe
Sodium acetate is a chemical compound with the formula CH3COONa. It is a common salt that is widely used in various laboratory and industrial applications. Sodium acetate functions as a buffer solution, helping to maintain a specific pH level in chemical reactions and processes.
Sourced in United States
NaCNBH3 is a reducing agent commonly used in organic synthesis. It functions as a mild reducing agent for the selective reduction of nitro, azido, and carbonyl groups.
Sourced in United States, Germany, Italy, United Kingdom, Sao Tome and Principe, China, Macao, Spain, India, Japan, France, Belgium, Israel, Canada
Rotenone is a naturally occurring insecticide and piscicide derived from the roots of certain tropical plants. It is commonly used as a research tool in laboratory settings to study cellular processes and mitochondrial function. Rotenone acts by inhibiting the electron transport chain in mitochondria, leading to the disruption of cellular respiration and energy production.
Sourced in United States, Germany, United Kingdom, Italy, Sao Tome and Principe, Japan, Macao, France, China, Belgium, Canada, Austria
Oligomycin is a laboratory product manufactured by Merck Group. It functions as an inhibitor of the mitochondrial F1F0-ATP synthase enzyme complex, which is responsible for the synthesis of adenosine triphosphate (ATP) in cells. Oligomycin is commonly used in research applications to study cellular bioenergetics and mitochondrial function.
Sourced in Austria
The Oxygraph-2k is a high-performance respirometer designed for precise measurement of oxygen consumption and production in biological samples. It provides real-time monitoring of oxygen levels, making it a valuable tool for researchers in the fields of cell biology, physiology, and bioenergetics.
Sourced in United States, Germany, Italy, United Kingdom, Sao Tome and Principe, China, Japan, Macao, France, Belgium
Antimycin A is a chemical compound that acts as a potent inhibitor of mitochondrial respiration. It functions by blocking the electron transport chain, specifically by interfering with the activity of the cytochrome bc1 complex. This disruption in the respiratory process leads to the inhibition of cellular respiration and energy production within cells.
Sourced in United States, France
The XF24 Extracellular Flux Analyzer is a lab equipment product from Agilent Technologies. It is designed to measure the oxygen consumption rate and extracellular acidification rate of cells in real-time.
Sourced in United States, Germany, Sao Tome and Principe
The Protein Carbonyl Content Assay Kit is a laboratory tool designed to quantify the level of protein carbonyl content in a sample. It provides a colorimetric method to measure the carbonyl groups present in oxidized proteins.

More about "Hydrazones"

Hydrazones are a versatile class of organic compounds featuring the characteristic R1R2C=NNH2 functional group, where R1 and R2 can be alkyl, aryl, or other organic moieties.
These valuable intermediates are widely utilized in organic synthesis, medicinal chemistry, and materials science due to their diverse reactivity and structural versatility.
Hydrazones can undergo a variety of transformations, such as condensation, oxidation, and reduction, making them valuable precursors in the synthesis of heterocyclic compounds, pharmaceuticals, and other functional materials.
Researchers can leverage the power of AI-driven platforms like PubCompare.ai to optimize their hydrazone research.
These tools enable scientists to locate the best protocols from literature, preprints, and patents, while conducting accurate comparisons to enhance reproducibility and accuracy.
By utilizing PubCompare.ai, researchers can take the guesswork out of hydrazone experimentation and streamline their research workflows.
Synonymous terms for hydrazones include azomethine derivatives, imine-hydrazines, and hydrazo compounds.
Related concepts include the OxyBlot Protein Oxidation Detection Kit, which can be used to assess protein carbonyl content, a marker of oxidative stress.
Additionally, reagents like HEPES, sodium acetate, NaCNBH3, rotenone, oligomycin, and antimycin A may be employed in hydrazone-related experiments, while the Oxygraph-2k and XF24 Extracellular Flux Analyzer can provide insights into cellular metabolism and bioenergetics.
By incorporating these related terms and techniques, researchers can gain a more comprehensive understanding of the broader context surrounding hydrazone chemistry and applications.