Study population. The NHS was established in 1976 when 121,700 female registered nurses 30–55 years of age were enrolled, whereas in 1989 the younger counterpart NHSII cohort was initiated among a total of 116,430 female registered nurses 25–42 years of age. A total of 18,743 NHS participants 53–79 years of age provided blood and urine samples in 2000–2002. In 1996–2001, blood and urine samples were collected from 29,611 NHSII participants 32–52 years of age. Urine samples were collected without preservative in a polypropylene container and returned to a central biorepository via overnight courier with an icepack, where they were processed immediately upon arrival and aliquoted into polypropylene cryovials, which were stored in the vapor phase of liquid nitrogen freezers at ≤ –130°C. In both cohorts, a high follow-up rate of > 90% was maintained among participants who provided urine samples.
Assessment of covariates. NHS participants responded to a questionnaire inquiring about body weight, height, demographic and lifestyle information, and medical history at study baseline. Similar follow-up questionnaires have been administered biennially since baseline to update these variables. In 1984, 1986, and every 4 years thereafter, a validated food frequency questionnaire (FFQ) has been used to assess participants’ usual diet. In the NHSII, questionnaires similar to those used in the NHS are sent biennially to update lifestyle and health-related characteristics. The FFQ was first administered in 1991 and is updated every 4 years in the NHSII. Based on the FFQ, we derived a score of the Alternative Healthy Eating Index (AHEI), an indicator of adherence to healthy eating behavior (McCullough et al. 2002 (
link)). Of note, the FFQs did not inquire about any food packaging information. Information on cigarette smoking, physical activity, family history of diabetes, menopausal status, oral contraceptive use, hormone replacement therapy, and the history of hypertension or hypercholesterolemia were also assessed in the questionnaires at baseline and during follow-up. In the questionnaires, participants were asked about the average time per week in the past year spent on leisure-time physical activities. Based on this information, we calculated energy expenditure in metabolic equivalent tasks (METs) measured in hours per week.
Ascertainment of T2D. At baseline and on all biennial follow-up questionnaires, participants were asked whether they had received a physician-diagnosis of diabetes. Those reporting a diabetes diagnosis were sent a supplementary questionnaire (Manson et al. 1991 (
link)) regarding any symptoms, diagnostic tests, and treatment. We used one of the following American Diabetes Association 1998 criteria to confirm self-reported T2D diagnosis:
a) an elevated glucose concentration (fasting plasma glucose ≥ 7.0 mmol/L, random plasma glucose ≥ 11.1 mmol/L, or plasma glucose ≥ 11.1 mmol/L after an oral glucose load) and at least one symptom (excessive thirst, polyuria, weight loss, or hunger) related to diabetes;
b) no symptoms, but elevated glucose concentrations on two separate occasions; or
c) treatment with insulin or oral hypoglycemic medication. The accuracy of self-reported diagnosis of T2D has been demonstrated in a validation study (Manson et al. 1991 (
link)), in which a blinded endocrinologist confirmed the diagnosis of diabetes by reviewing medical records of 61 of 62 NHS participants who responded to the supplementary questionnaire. Only confirmed T2D cases were included in the present study in order to minimize possible misclassification.
Nested case–control study. We prospectively identified and confirmed 971 T2D cases (NHS, 394; NHSII, 577) through June 2008 (NHS) or June 2007 (NHSII) among participants who provided first morning urine samples and were free of T2D, cardiovascular disease, and major cancers except nonmelanoma skin cancer at sample collection. Using the risk–set sampling scheme, we randomly selected one control for each case from among the women who remained free of T2D at the case’s date of diagnosis (Prentice and Breslow 1978 ). We matched cases and controls for age at urine sample collection (± 1 year), date (± 3 months)/time (first morning or not) of sample collection, ethnicity (white or other), fasting status when blood was drawn (≥ 8 hr or not), and menopausal status (yes, no) and hormone replacement therapy use (yes, no) at sample collection (NHSII only). T2D cases diagnosed within the first year since urine sample collection were excluded from selection in order to reduce the potential for reverse causation bias.
The study protocol was approved by the institutional review board of the Brigham and Women’s Hospital and the Human Subjects Committee Review Board of Harvard School of Public Health. Informed consent was provided by all participants involved in this research.
Laboratory measurements. Urinary concentrations of BPA and eight phthalate metabolites [mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), monobutyl phthalate (MBP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), monoethyl phthalate (MEP), and phthalic acid] were measured using established methods with modifications (Fox et al. 2011 (
link); Kato et al. 2005 (
link)) (see Supplemental Material, “Laboratory measurements,” pp. 2–3, for complete details). Briefly, samples were mixed with isotopically-labeled phthalate metabolites and BPA and treated with β-glucuronidase and sulfatase. Urinary concentrations of phthalate metabolites were measured by orbitrap-liquid chromatography–mass spectrometry (LCMS) (model Exactive; Thermo Electron, Waltham, MA), and BPA concentrations were measured by tandem-LCMS (model TSQ Ultra; Thermo Electron) at A. Franke’s laboratory at the University of Hawaii Cancer Center in 2012. Of note in the NHS only, because of technical reasons, concentrations of phthalic acid were not available for 144 case–control pairs, and only combined concentrations of MBP and MiBP were available. We also measured urinary creatinine levels using a Roche-Cobas MiraPlus clinical chemistry autoanalyzer (Roche Diagnostics, Indianapolis, IN) with a kit from Randox Laboratories (Crumlin, UK). Lastly, In the NHS we measured two liver enzymes [alanine transaminase (ALT) and γ-glutamyl transpeptidase (GGT)] using a direct enzymatic colorimetric assay, performed on the Roche P Modular system (Roche Diagnostics). In addition, fetuin-A levels were measured by an enzyme immunoassay from R&D Systems (Minneapolis, MN) in the NHS (Sun et al. 2013 (
link)).
Quality control procedures. Each pair of matched case–control urine samples was shipped in the same batch and analyzed in the same run. Within each batch, samples were assayed by the same technician in a random sequence under identical conditions. Duplicates of blinded quality control samples (
n = 82 for NHS; 116 for NHSII) were run along with the case–control samples to monitor the quality of these assays. We calculated intra-assay coefficients of variation (CVs) based on the measurements of these samples. The average CVs were < 10% for most metabolites (including creatinine), except for MEHP (NHS 11.4%, NHSII 10.0%) and BPA (NHS 11.5%, NHSII 13.0%).
Within-person stability of metabolites. We measured BPA and phthalates in two urine samples collected 1–3 years apart from a separate sample of 120 participants to evaluate the within-person reproducibility (Townsend et al. 2013 (
link)). The creatinine-adjusted intraclass correlation coefficients (ICCs) between the two measurements were ≥ 0.30 for all metabolites [ranging from 0.30 for MiBP to 0.53 for MBP, except for MEHP and BPA (0.14 for both)].
Statistical methods. We summed molar concentrations of MEHP, MEHHP, MECPP, and MEOHP to represent total metabolites of di(2-ethylhexyl) phthalate (DEHP). Likewise, we summed molar concentrations of MBP and MiBP. We calculated total phthalate concentrations (in nanomoles per liter) as the summed values of MEHP, MEHHP, MECPP, MEOHP, MBP, MiBP, MBzP, and MEP to facilitate comparisons with previous studies. We calculated Spearman correlation coefficients (
rS) among controls to evaluate the intercorrelation among urinary metabolites.
Study participants were categorized into quartiles according to the cohort-specific distribution of metabolite concentrations among controls. We used conditional logistic regression to model the associations under investigation. We adjusted for body mass index (BMI; < 25.0 kg/m
2, 25.0–27.4 kg/m
2, 27.5–29.9 kg/m
2, 30.0–32.4 kg/m
2, ≥ 32.5 kg/m
2, missing category), smoking status (current smoker, past smoker, nonsmoker), oral contraceptive use (never used, past user, current user; NHSII only), hormone replacement therapy (yes, no; NHS only), physical activity (METs-hr/week), alcohol use (abstainer, < 5.0 g/day, 5.0–14.9 g/day, ≥ 15.0 g/day), family history of diabetes (yes, no), history of hypercholesterolemia or hypertension (yes, no), AHEI score, and urinary creatinine (mg/dL). In the current analysis we used measurements of covariates derived from the questionnaire administered in 2000 (1998 for AHEI and alcohol use) in NHS or 1995 in NHSII.
p-Values for linear trend were calculated by modeling the median value of each quartile as a continuous variable. We pooled cohort-specific estimates for the NHS and NHSII using a random-effects meta-analysis. Heterogeneity of odds ratios (ORs) between the two cohorts was evaluated by the Cochrane Q statistic and the
I2 statistic.
Restricted cubic spline regressions with 3 knots were used to model potential dose–response relations between the metabolites and diabetes (Durrleman and Simon 1989 (
link)). In this analysis, to maximize statistical power, we pooled data for case–control pairs from the two cohorts and then performed statistical analyses using conditional logistic regression. In addition, participants in the top 5% of metabolite concentrations were excluded to minimize the potential impact of extreme outliers. We used likelihood ratio tests (LRTs) to examine nonlinearity, comparing the model with the linear term only to the model with the linear plus the cubic spline terms.
LRTs were also used to examine effect modification of associations between metabolites and T2D by testing the significance of multiplicative interaction terms between metabolite quartiles modeled as ordinal variables and each potential modifier.
As secondary analyses, we calculated Spearman partial correlation coefficients between the chemicals and plasma levels of liver enzymes and fetuin-A, as well as their interactions on incident T2D, in the NHS to evaluate the potential adverse effects of the pollutants on liver function as suggested by animal experiments and human observational studies (Desvergne et al. 2009 (
link); Lang et al. 2008 (
link)).
All
p-values were two-sided and
p < 0.05 was considered statistical significance. Data were analyzed with SAS, version 9.2 (SAS Institute Inc., Cary, NC).
Sun Q., Cornelis M.C., Townsend M.K., Tobias D.K., Eliassen A.H., Franke A.A., Hauser R, & Hu F.B. (2014). Association of Urinary Concentrations of Bisphenol A and Phthalate Metabolites with Risk of Type 2 Diabetes: A Prospective Investigation in the Nurses’ Health Study (NHS) and NHSII Cohorts. Environmental Health Perspectives, 122(6), 616-623.