The largest database of trusted experimental protocols

Ketones

Ketones are a class of organic compounds characterized by the presence of a carbonyl group (C=O) with two alkyl or aryl groups attached.
They play a crucial role in various biological processes, including energy metabolism and signaling pathways.
Ketones can be produced naturally in the body during states of fasting, exercise, or low-carbohydrate diets, and have been studied for their potential therapeutic applications in conditions like diabetes, neurological disorders, and cancer.
Researchers continue to investigate the mechanisms by which ketones impact human health and explore the development of ketone-based supplements and therapies to optimize their benefits.

Most cited protocols related to «Ketones»

All metabolite reference standards underwent a two-step derivatization procedure. Therefore 1 mg of each standard was dissolved in a solution of 1 ml methanol:water:isopropanol (2.5:1:1 v/v). Then 10 μl of each standard solution were taken out and evaporated to dryness. First, methoximation was performed to inhibit the ring formation of reducing sugars, protecting also all other aldehydes and ketones. A solution of 40 mg/ml O-methylhydroxylamine hydrochloride, (CAS: [593-56-6]; Formula CH5NO.HCl; Sigma-Aldrich No. 226904 (98%)) in pyridine (99.99%) was prepared. The dried standards and 10 μl of the O-methylhydroxylamine reagent solution were mixed for 30 s in a vortex mixer and subsequently shaken for 90 minutes at 30°C. Afterwards, 90μl of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) (1 ml bottles, Pierce, Rockford IL) was added and shaken at 37°C for 30 min for trimethylsilylation of acidic protons to increase volatility of metabolites. A mixture of internal retention index (RI) markers was prepared using fatty acid methyl esters (FAME markers) of C8, C9, C10, C12, C14, C16, C18, C20, C22, C24, C26, C28 and C30 linear chain length, dissolved in chloroform at a concentration of 0.8 mg/ml (C8-C16) and 0.4 mg/ml (C18-C30). 2 μl of this RI mixture were added to the reagent solutions, transferred to 2 mL glass crimp amber autosampler vials. Data acquisition parameters are given in table 1. Subsequent to data processing using the instrument manufacturer’s software programs, spectra and retention indices were manually curated into the new Leco FiehnLib (359-008-100) or automatically transferred by Agilent to the new Agilent FiehnLib (G1676AA).
Publication 2009
Acids Aldehydes Amber Cardiac Arrest Chloroform Esters Fatty Acids Isopropyl Alcohol Ketones Methanol methoxyamine Protons pyridine Retention (Psychology) Sugars trimethylchlorosilane Volatility
The core of the LigParGen server is the internal use of the BOSS (32 (link)) software to assign the bonded and van der Waals parameters by analogy to the existing atom types in the latest OPLS-AA force field (4 (link)). Subsequently a semiempirical AM1 (9 (link)) calculation is performed to calculate and assign the charges. The server can, as directed by the user, utilize one of two CM1A-derived charge models as described briefly below. For further information about technical details and comparisons, please read the original papers (9 (link),16 (link)).
In general, quantum mechanics population analysis methods distribute the total electron density of a molecule into partial charges centered on each atom of the molecule. As partial charges are not observables, there are different ways to partition the electron density. The CM1A method uses the Mulliken population analysis from the electron density obtained by the AM1 method from the ligand geometry. Mulliken charges for an atom A are computed using the following equation: where is the partial Mulliken charge, is the nuclear charge of the atom A and is the electron density assigned to atom A as described by the equation:
where N is the total number of electrons in the molecule, is the molecular orbital coefficient for the atomic orbital and is the QM overlap integral. This electron density definition is based on the linear combination of atomic orbital–molecular orbital (LCAO–MO) method where the molecular electronic distribution per each molecular orbital is defined each as a linear combination of atomic orbitals (n).
The CM1A charges are then computed using a multilinear transformation of the Mulliken charges based in the computed bond orders to improve the molecular dipole moment using empirical parameters. Then, for neutral molecules, the 1.14*CM1A model scales the charges by a factor 1.14, which was fitted to improve the agreement of the HFEs to the experimental values (16 (link)). If the total charge of the molecule is not zero, partial charges are not scaled. It should be noted that, as in all quantum mechanics based charges, the CM1A charges can have some variations due to the molecular geometry. The typical variations observed in our tests are in the 0.03–0.05 e range, with a few cases involving intramolecular hydrogen bonds reaching 0.1e.
A later evaluation of HFEs for a set of 426 organic molecules showed that some moieties such as phenyl rings, aldehydes or ketones are not well parameterized by the 1.14*CM1A charge model, leading to a mean unsigned error (MUE) of 1.5 kcal/mol with respect to experimental HFE data. The performance of CM1A charges was improved by adding Localized Bond Charge Corrections (LBCC), by which small charge adjustments are made to the partial charges for atoms in problematic bond types such as, CT-OH in aliphatic alcohols. Only 19 LBCCs were enough to reduce the errors with the 1.14*CM1A charges for the 426 HFE values to only 0.61 kcal/mol. These adjustments give rise to the 1.14*CM1A-LBCC charge method which can also be provided by the LigParGen server.
Publication 2017
Alcohols Aldehydes Buschke-Ollendorff syndrome Electrons factor A Fibrinogen Hydrogen Bonds Ketones Ligands Mechanics
SARS-CoV-2 isolates were propagated in VeroE6 cells in Opti-MEM I (Invitrogen) containing 0.3% bovine serum albumin (BSA) and 1 µg of l-1-tosylamide-2-phenylethyl chloromethyl ketone treated-trypsin per mL or in Vero 76 cells in Eagle’s minimal essential medium (MEM) supplemented with 2% fetal calf serum at 37 °C.
All experiments with SARS-CoV-2 were performed in enhanced biosafety level 3 (BSL3) containment laboratories at the University of Tokyo, which are approved for such use by the Ministry of Agriculture, Forestry, and Fisheries, Japan, or in enhanced BSL3 containment laboratories at the University of Wisconsin-Madison, which are approved for such use by the Centers for Disease Control and Prevention and by the US Department of Agriculture.
Full text: Click here
Publication 2020
Cells Eagle Fetal Bovine Serum Ketones SARS-CoV-2 Serum Albumin, Bovine Trypsin Vero Cells

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2016
3-Hydroxybutyrate Acids acylcarnitine Acyl Coenzyme A Amino Acids BLOOD Capillaries Cholesterol Diagnosis Electrons Fatty Acids, Esterified Gas Chromatography-Mass Spectrometry Glycerin Isoleucine Isotopes Keto Acids Ketogenic Diet Ketones Lactates Leucine Liver Muscle, Gastrocnemius Plasma Tandem Mass Spectrometry Technique, Dilution Triglycerides Valine
The capability of sewage sludge microbial communities to utilize a variety of carbon sources was assessed by using Biolog EcoPlate [22 ]. Every plate had 96 wells containing 31 different carbon sources plus a blank well, in three replications. The rate of utilization of the carbon sources was pointed by the reduction of tetrazolium violet redox dye, which changed from colorless to purple if added microorganisms utilize the substrate [23 ]. EcoPlate was prepared in the following way: 1 g of sewage sludge was suspended in 99-ml sterile peptone water and shaken for 20 min at 20 °C and then was incubated at 4 °C for 30 min [24 (link)]. Next, each well of the Biolog EcoPlate was inoculated by 120 μl of the prepared suspension and incubated at 25 °C. Absorbance at 590 nm was measured on Biolog Microstation after 24, 48, 72, 96, 120, and 144 of incubation hours. Optical density (ODi) value from each well was corrected by subtracting the control (blank well) values from each plate well. Optical density values obtained at 120 h of incubation represented the optima range of optical density readings, so 120 h of incubation results was used for the assessment of microbial functional diversity and statistical analyses. In addition, substrates were subdivided into five group substrates, carbohydrates, carboxylic and ketonic acids, amines and amides, amino acids, and polymers, according to Weber and Legge [25 (link)].
Microbial activity in each microplate was expressed as average well color development (AWCD). Substrate richness values (R) were calculated as the number of utilized substrates and evenness were calculated according to Zak et al. [26 (link)] (Table 2).

Formulae for calculations

IndexDefinitionFormulaeDefinitions
Average well color developmentAWCD = Σ ODi/31

pi = proportional color development of the well over total color development of all wells of a plate

H = Shannon index of diversity

S = number of wells with color development (substrate utilization richness)

Shannon diversityMeasure of richnessH = −Σpi(lnpi)
Shannon evennessEvenness calculated from Shannon indexE = H/lnS
Full text: Click here
Publication 2014
Acids Amides Amines Amino Acids Carbohydrates Carbon DNA Replication Ketones Microbial Community Oxidation-Reduction Peptones Polymers Sewage Sludge Sterility, Reproductive tetrazolium violet Vision

Most recents protocols related to «Ketones»

Not available on PMC !

Example 26

[Figure (not displayed)]

Synthesis of 169-A.

A mixture of tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (750 mg, 3.54 mmol), 1-methylpiperidin-4-one (800 mg, 7.08 mmol) and acetic acid (2 drops) in DCE (15 mL) was stirred at 50° C. for 2 h. Then Sodium triacetoxyborohydride (1.50 g, 7.08 mmol) was added into above mixture and stirred at 50° C. for another 2 h. After the reaction was completed according to LCMS, the solvent was diluted with water (10 mL) and then extracted by DCM (10 mL×3). The combined organics washed with brine (10 mL×3), dried over anhydrous Na2SO4 and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜50:1) to give 169-A (750 mg, 69%) as a yellow oil.

Synthesis of 169-B.

A solution of 169-A (400 mg, 1.29 mmol) in DCM (10 mL) was added TFA (5 mL) and stirred at room temperature for 1 h. when LCMS showed the reaction was finished. The solvent was removed in vacuo to give 169-B as a crude product and used to next step directly.

Synthesis of 169-C.

A mixture of 143-C (306 mg, 0.65 mmol) and 169-B (crude product from last step) in acetonitrile (6 mL) was stirred at 50° C. for 30 min. Then Na2CO3 (624 mg, 6.50 mmol) was added into above mixture and stirred at 50° C. for 3 h. After the reaction was completed according to LCMS, the mixture was cooled to room temperature. The Na2CO3 was removed by filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜20:1) to give 169-C (230 mg, 76%) as a yellow solid.

Synthesis of 169.

A mixture of 169-C (230 mg, 0.49 mmol) and Pd/C (230 mg) in MeOH (10 mL) was stirred at room temperature for 30 min under H2 atmosphere. Pd/C was then removed by filtration through the Celite. The filtrate was concentrated and the residue was purified by Pre-TLC (DCM:MeOH=10:1) to give 169 (150 mg, 70%) as a white solid.

Compounds 152, 182, 199, 201, 202, 203, 235, 236 and 256 were synthesized in a similar manner using the appropriately substituted aldehyde or ketone variant of 169.

Compound 152.

50 mg, 36%, a light yellow solid.

Compound 182.

70 mg, 38%, a red solid.

Compound 199.

50 mg, 54%, a light yellow solid.

Compound 201.

30 mg, 42%, as a yellow solid.

Compound 202.

30 mg, 42%, a yellow solid.

Compound 203.

30 mg, 18%, a yellow solid.

Compound 235.

170 mg, 87%, a white solid.

Compound 236.

70 mg, 50%, a white solid.

Compound 256.

20 mg, 8%, a light yellow solid.

Compounds 210, 211, 215, 222, 223, 242 and 262 were synthesized in a similar manner using the appropriately substituted amine variant of 169.

Compound 210.

160 mg, 96%, a tan solid.

Compound 211.

70 mg, 40%, a white solid

Compound 215.

70 mg, 75%, a white solid.

Compound 222.

30 mg, 42%, a yellow solid.

Compound 223.

35 mg, 31%, a white solid.

Compound 242.

50 mg, 34%, a white solid.

Compound 262.

38 mg, 43%, a white solid.

Full text: Click here
Patent 2024
Acetic Acid acetonitrile Aldehydes Amines Anabolism Atmosphere brine Celite Chromatography compound 26 compound 235 Filtration Ketones Light Lincomycin Pyrrole Silica Gel Sodium Solvents TERT protein, human
Not available on PMC !

Example 125

[Figure (not displayed)]

Methyl 4-((5-(benzyloxy)-2-methoxyphenyl)(ethyl)amino)butanoate (184). 5-(Benzyloxy)-N-ethyl-2-methoxyaniline (146) (0.681 g, 2.65 mmol), DIEA (0.92 mL, 5.3 mmol), and methyl 4-iodobutyrate (0.72 mL, 5.3 mmol) in DMF (5 mL) were stirred at 70° C. for 5 days. The reaction mixture was cooled to rt, diluted with EtOAc (60 mL), washed with water (4×50 mL), brine (75 mL), dried over Na2SO4 and evaporated. The residue was purified by chromatography on a silica gel column (2.5×30 cm bed, packed with CHCl3), eluant: 5% MeOH in CHCl3 to get compound 184 (0.72 g, 76%) as a dark amber oil.

Methyl 4-(ethyl(5-hydroxy-2-methoxyphenyl)amino)butanoate (186). Ester 184 (0.72 g, 2.0 mmol) was stirred under reflux with 6 mL of water and 6 mL of conc HCl for 1.5 hrs and then evaporated to dryness to give acid 185 as a brown gum. The crude acid was dissolved in 50 mL of methanol containing 1 drop (cat.) of methanesulfonic acid ant the solution was kept for 2 hrs at rt. After that the mixture was concentrated in vacuum and the residue was mixed with 20 mL of saturated NaHCO3. The product was extracted with EtOAc (3×40 mL). The extract was washed with brine (40 mL), dried over Na2SO4 and evaporated. The residue was purified by chromatography on a silica gel column (2.5×30 cm bed, packed with CHCl3), eluant: 5% MeOH in CHCl3 to get compound 186 (0.444 g, 83%) as a brown oil.

N-(6-(dimethylamino)-9-(4-(ethyl(4-methoxy-4-oxobutyl)amino)-2-hydroxy-5-methoxyphenyl)-3H-xanthen-3-ylidene)-N-methylmethanaminium chloride (187). To a stirred suspension of tetramethylrhodamine ketone 101 (0.234 g, 0.830 mmol) in 10 mL of dry chloroform was added oxalyl chloride (72 μL, 0.82 mmol) upon cooling to 0-5° C. The resulting red solution was stirred for 0.5 h at 5° C., and the solution of compound 186 (0.222 g, 0.831 mmol) in dry chloroform (5 mL) was introduced. The reaction was allowed to heat to rt, stirred for 72 h, diluted with CHCl3 (100 mL and washed with sat. NaHCO3 solution (2×30 mL) The organic layer was extracted with 5% HCl (3×25 mL). The combined acid extract was washed with CHCl3 (2×15 mL; discarded), saturated with sodium acetate and extracted with CHCl3 (5×30 mL). The extract was washed with brine (50 mL), dried over Na2SO4 and evaporated. The crude product was purified by chromatography on silica gel column (2×50 cm bed, packed with CHCl3/MeOH/AcOH/H2O (100:20:5:1)), eluant: CHCl3/MeOH/AcOH/H2O (100:20:5:1) to give the product 187 (0.138 g, 29%) as a purple solid.

4-((4-(6-(dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl)-5-hydroxy-2-methoxyphenyl)(ethyl)amino)butanoate (188). Methyl ester 187 (0.136 g, 0.240 mmol) was dissolved in 5 mL of 1M KOH (5 mmol). The reaction mixture was kept at rt for 1.5 hrs and the acetic acid (1 mL) was added. The mixture was extracted with CHCl3 (4×30 mL), and combined extract was washed with brine (20 mL), filtered through the paper filter and. The crude product was purified by chromatography on silica gel column (2×50 cm bed, packed with MeCN/H2O (4:1)), eluant: MeCN/H2O/AcOH/(4:1:1) to give the product 188 (0.069 g, 98%) as a purple solid.

N-(6-(dimethylamino)-9-(4-((4-(2,5-dioxopyrrolidin-1-yloxy)-4-oxobutyl)(ethyl)amino)-2-hydroxy-5-methoxyphenyl)-3H-xanthen-3-ylidene)-N-methylmethanaminium chloride (189). To a solution of the acid 188 (69 mg, 0.12 mmol) in DMF (2 mL) and DIEA (58 μL, 0.33 mmol) was added N-hydroxysuccinimide trifluoroacetate (70 mg, 0.33 mmol). The reaction mixture was stirred for 30 min, diluted with chloroform (100 mL) and washed with water (5×50 mL), brine (50 mL), filtered through paper and concentrated in vacuum. The crude product was purified by precipitation from CHCl3 solution (5 mL) with ether (20 mL) to give compound 189 (55 mg, 67%) as a purple powder.

Full text: Click here
Patent 2024
Acetic Acid Acids Amber Anabolism Bicarbonate, Sodium brine Chlorides Chloroform Chromatography Esters Ethyl Ether Hydroxyl Radical Ketones methanesulfonic acid Methanol N,N-diisopropylethylamine N-hydroxysuccinimide oxalyl chloride Powder Silica Gel Sodium Acetate tetramethylrhodamine Trifluoroacetate Vacuum
Not available on PMC !

Example 3

Cyclohexene (1a) and polar organic solvent, preferably acetonitrile in (1:2 to 1:10 weight ratio with respect to the substrate) was taken in to a 60 ml vessel. Further, the bare graphene oxide as photocatalyst (1 to 10 mol % of the substrate) was added and the resulting mixture was saturated with CO2 by purging at 1 atm pressure. The reaction vessel was sealed and irradiated with 20 W LED light (Model No. HP-FL-20 W-F, Hope LED Opto-Electric CO., Ltd) for 24 h. The intensity of the LED light at the reaction flask was measured to be 86 W/m2 by intensity meter. The conversion of the olefin was examined by GC-FID based on the unreacted substrate. The selectivity of the α,β-unsaturated hydroxyl or carbonyl compounds was determined by GC-MS. The conversion of olefin and the selectivity towards the corresponding α,β-unsaturated hydroxyl and ketone is given in the Table 1, entry 3.

Full text: Click here
Patent 2024
acetonitrile Alkenes Blood Vessel cyclohexene cyclohexene oxide Electricity Gas Chromatography-Mass Spectrometry Genetic Selection Graphene graphene oxide Hydroxyl Radical Ketones Light Pressure Solvents

Example 101

[Figure (not displayed)]

Compound 104. To a stirred suspension of ketone 101 (94 mg, 0.333 mmol) in dry chloroform (10 mL), oxalyl chloride (30 μL, 0.33 mmol) was added upon cooling to 0-5° C. The resulted red solution was stirred for 1 h, then N,N-diethyl-m-anisidine (60 mg, 0.33 mmol) was added. The reaction was allowed to warm to rt, stirred for 16 h and diluted with CHCl3 (60 mL). Chloroform solution was shaken with sat. NaHCO3 (40 mL) until water layer turned almost colorless. The organic layer was washed with sat. NaHCO3 (20 mL) and extracted with 10% HCl (2×30 mL). The combined acid extract was washed with CHCl3 (2×15 mL; discarded), the aqueous solution was saturated with sodium acetate and extracted with CHCl3 (4×30 mL). The extract was washed with brine (30 mL), and evaporated. The crude product was purified by chromatography on silica gel column (2×40 cm bed, packed with 10% MeOH and 1% AcOH in CHCl3) eluant: 10% MeOH and 1% AcOH in CHCl3 to give the product 104 (3 mg, 2%) as a purple wax.

Full text: Click here
Patent 2024
3-anisidine Acids Anabolism Bicarbonate, Sodium brine Chloroform Chromatography Ketones oxalyl chloride Silica Gel Sodium Acetate

Example 23

    • A composition comprising:
    • about 0.01% to 3.0% of a plurality of functionalized metallic nanofibers, substantially all of the metallic nanofibers having at least a partial coating of a polyvinyl pyrrolidone polymer;
    • about 0.5% to 5.0% polyimide; and
    • with the balance comprising a ketone, including diketones and cyclic ketones, such as cyclohexanone, cyclopentanone, cycloheptanone, cyclooctanone, acetone, benzophenone, acetylacetone, acetophenone, cyclopropanone, isophorone, methyl ethyl ketone, or mixtures thereof.

Full text: Click here
Patent 2024
Acetone acetophenone acetylacetone benzophenone cycloheptanone cyclohexanone cyclooctanone cyclopentanone isophorone Ketones Metals methylethyl ketone Polymers Povidone

Top products related to «Ketones»

Sourced in United States, Germany, United Kingdom, China, Italy, Japan, Sao Tome and Principe, Canada, Macao, Poland, India, France, Spain, Portugal, Australia, Switzerland, Ireland, Belgium, Sweden, Israel, Brazil, Czechia, Denmark, Austria
Trypsin is a serine protease enzyme that is commonly used in cell biology and biochemistry laboratories. Its primary function is to facilitate the dissociation and disaggregation of adherent cells, allowing for the passive release of cells from a surface or substrate. Trypsin is widely utilized in various cell culture applications, such as subculturing and passaging of adherent cell lines.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Germany, United Kingdom, Switzerland, China
TPCK-trypsin is a protease enzyme used in laboratory settings. It is derived from bovine pancreas and is modified to enhance its specificity and activity. The primary function of TPCK-trypsin is the cleavage of peptide bonds in proteins, particularly those involving the carboxyl group of lysine or arginine residues.
Sourced in United States, Germany, Canada
TPCK-treated trypsin is a purified enzyme derived from bovine pancreas. It is commonly used in cell culture and molecular biology applications to dissociate adherent cells from surfaces and to facilitate protein digestion.
Sourced in United States, United Kingdom
The Precision Xtra is a compact and portable blood glucose monitoring system designed for professional use. It provides precise and reliable blood glucose measurements to support healthcare providers in their clinical decision-making.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, United Kingdom, Germany, China, Japan, Canada, France, Switzerland, Italy, Australia, Belgium, Spain, Denmark, Ireland, Netherlands, Holy See (Vatican City State), Israel
Opti-MEM is a cell culture medium designed to support the growth and maintenance of a variety of cell lines. It is a serum-reduced formulation that helps to reduce the amount of serum required for cell culture, while still providing the necessary nutrients and growth factors for cell proliferation.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.

More about "Ketones"

Ketones are a class of organic compounds characterized by the presence of a carbonyl group (C=O) with two alkyl or aryl groups attached.
These versatile molecules play a crucial role in various biological processes, including energy metabolism and signaling pathways.
Ketones can be produced naturally in the body during states of fasting, exercise, or low-carbohydrate diets, and have been studied for their potential therapeutic applications in conditions like diabetes, neurological disorders, and cancer.
Researchers continue to investigate the mechanisms by which ketones impact human health and explore the development of ketone-based supplements and therapies to optimize their benefits.
Ketones are closely related to other important biomolecules like trypsin, a proteolytic enzyme crucial for digestion, and FBS (Fetal Bovine Serum), a widely used cell culture supplement.
TPCK-trypsin, a chemically modified form of trypsin, is also used in research applications.
The Precision Xtra device is a popular tool for measuring ketone levels in the body, providing valuable insights into an individual's metabolic state.
Additionally, antimicrobial agents like penicillin and streptomycin are often used in cell culture media, such as Opti-MEM and DMEM, to prevent bacterial contamination.
Bovine serum albumin (BSA) is another common component of cell culture media, serving as a protein source and growth supplement.
By understanding the intricacies of ketones and their relationship to these other biomolecules and research tools, scientists and healthcare professionals can develop more effective strategies for optimizing human health and unlocking the full potential of ketone-based therapies.
Whether you're a researcher, a healthcare provider, or an individual interested in the science of ketones, this comprehensive overview can help you navigate the complex world of these fascinating compounds.