The largest database of trusted experimental protocols
> Chemicals & Drugs > Organic Chemical > Lipofectamine

Lipofectamine

Lipofectamine is a widely used transfection reagent that facilitates the delivery of nucleic acids, such as DNA and RNA, into eukaryotic cells.
This cationic lipid-based system effectively encapsulates genetic material, enabling its uptake and subsequent expression within the target cells.
Lipofectamine has become a staple tool in molecular biology, allowing researchers to study gene function, perform gene knockdown experiments, and generate genetically modified cell lines.
Its ease of use, high transfection efficiency, and compatibility with a variety of cell types have made Lipofectamine an indispensable component of modern cell biology research.
However, optimizing Lipofectamine protocols can be a challeging and time-consuming process.
Fortunately, PubCompare.ai offers an AI-driven platform to effortlessly compare Lipofectamine transfection protocols from literature, preprints, and patents, helping researchers identify the most effective and reproducible methods to enhance their research accuracy and reproducibility.

Most cited protocols related to «Lipofectamine»

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2010
Biological Assay Cells Complementary RNA Eukaryotic Cells Genome, Human Lipofectamine MicroRNAs Oligonucleotides RNA, Small Interfering Transfection trizol
SaOS2 and U2OS cells were maintained in DMEM (Nacalai Tesque) containing 10% (v/v) fetal bovine serum (FBS). BT549 cells were maintained in RPMI1640 (Nacalai Tesque) containing 10% (v/v) FBS. Human MSCs were purchased from Lonza (Basel, Switzerland) and maintained in MSCGM medium (Lonza). Cells were transfected with the respective siRNAs and expression plasmids by using Lipofectamine RNAiMAX (Life Technologies) and ViaFect (Promega), respectively, according to the manufacturer’s instructions.
Full text: Click here
Publication 2017
Cells Fetal Bovine Serum Homo sapiens Lipofectamine Plasmids Promega RNA, Small Interfering
For pseudoviruses construction, spike genes from strain Wuhan-Hu-1 (GenBank: MN908947) were codon-optimized for human cells and cloned into eukaryotic expression plasmid pcDNA3.1 to generate the envelope recombinant plasmids pcDNA3.1.S2.
The pseudoviruses were produced and titrated using methods similar to Rift valley fever pseudovirus, as described previously [19 (link),20 (link)]. For this VSV pseudovirus system, the backbone was provided by VSV G pseudotyped virus (G*ΔG-VSV) that packages expression cassettes for firefly luciferase instead of VSV-G in the VSV genome. Briefly, 293T cells were transfected with pcDNA3.1.S2 (30 μg for a T75 flask) using Lipofectamine 3000 (Invitrogen, L3000015) following the manufacturer’s instruction. Twenty-four hours later, the transfected cells were infected with G*ΔG-VSV with a multiplicity of four. Two hours after infection, cells were washed with PBS three times, and then new complete culture medium was added. Twenty-four hours post infection, SARS-CoV-2 pseudoviruses containing culture supernatants were harvested, filtered (0.45-μm pore size, Millipore, SLHP033RB) and stored at −70°C in 2-ml aliquots until use. The 50% tissue culture infectious dose (TCID50) of SARS-CoV-2 pseudovirus was determined using a single-use aliquot from the pseudovirus bank; all stocks were used only once to avoid inconsistencies that could have resulted from repeated freezing-thawing cycles. For titration of the SARS-CoV-2 pseudovirus, a 2-fold initial dilution was made in hexaplicate wells of 96-well culture plates followed by serial 3-fold dilutions (nine dilutions in total). The last column served as the cell control without the addition of pseudovirus. Then, the 96-well plates were seeded with trypsin-treated mammalian cells adjusted to a pre-defined concentration. After 24 h incubation in a 5% CO2 environment at 37°C, the culture supernatant was aspirated gently to leave 100 μl in each well; then, 100 μl of luciferase substrate (Perkinelmer, 6066769) was added to each well. Two min after incubation at room temperature, 150 μl of lysate was transferred to white solid 96-well plates for the detection of luminescence using a microplate luminometer (PerkinElmer, Ensight). The positive well was determined as ten-fold relative luminescence unit (RLU) values higher than the cell background. The 50% tissue culture infectious dose (TCID50) was calculated using the Reed–Muench method, as described previously [13 (link),18 (link),19 (link)].
Full text: Click here
Publication 2020
Cells Codon Culture Media Eukaryotic Cells Genes Genome HEK293 Cells Homo sapiens Infection Lipofectamine Luciferases Luciferases, Firefly Luminescence Mammals Plasmids Rift Valley Fever SARS-CoV-2 Technique, Dilution Tissues Titrimetry Trypsin Vertebral Column Virus
U2OS-based lines were maintained under standard conditions. cDNA cloning was by standard procedures. siRNA transfections were with Lipofectamine RNAiMAX (Invitrogen). IR was administered with a Faxitron X-ray machine (Faxitron X-ray Corporation). ATM inhibition was by KU-55933 (KuDOS Pharmaceuticals). Laser micro-irradiation was with a FluoView 1000 confocal microscope (Olympus) with 37°C heating stage (Ibidi) and 405 nm diode (6 mW). FRAP was performed when laser-track accumulation of GFP-tagged protein reached maximal steady-state level. For immunofluorescence, cells were pre-extracted or not, fixed with 2% paraformaldehyde, permeabilized and stained. For whole cell extracts, cells were lysed on plates with 2% SDS, 50 mM Tris-HCl pH 7.5, 20 mM N-ethylmaleimide (Sigma-Aldrich) and protease inhibitor cocktail (Roche). To immunoprecipitate 53BP1, BRCA1 and sumoylated proteins, different lysis and binding buffers were used (Supplementary Information). HR and NHEJ assays were as previously described17 (link),28 (link). For IR survival, cells were transfected with siRNA and exposed to IR. After 10-14 days, colonies were stained with 0.5% crystal violet/20% ethanol, counted and normalized to plating efficiencies. For Florescence-Activated Cell Sorting (FACS) of propidium iodide-stained cells, data were analyzed by FlowJo software. All error-bars represent STDEV. Detailed descriptions of methods are provided in Supplementary Information.
Publication 2009
Biological Assay BRCA1 protein, human Buffers Cell Extracts Cells DNA, Complementary Ethanol Ethylmaleimide Immunofluorescence KU 55933 Lipofectamine Microscopy, Confocal Non-Homologous DNA End-Joining paraform Pharmaceutical Preparations Propidium Iodide Protease Inhibitors Proteins Psychological Inhibition Radiography Radiotherapy RNA, Small Interfering TP53BP1 protein, human Transfection Tromethamine Violet, Gentian
For U2OS.EGFP and K562 cells, 2 × 105 cells were transfected with 250 ng of sgRNA expression plasmid or an empty U6 promoter plasmid (for negative controls), 750 ng of Cas9 expression plasmid, and 30 ng of td-Tomato expression plasmid using the 4D Nucleofector System according to the manufacturer’s instructions (Lonza). For HEK293 cells, 1.65 × 105 cells were transfected with 125 ng of sgRNA expression plasmid or an empty U6 promoter plasmid (for the negative control), 375 ng of Cas9 expression plasmid, and 30 ng of a td-Tomato expression plasmid using Lipofectamine LTX reagent according to the manufacturer’s instructions (Life Technologies). Genomic DNA was harvested from transfected U2OS.EGFP, HEK293, or K562 cells using the QIAamp DNA Blood Mini Kit (QIAGEN), according to the manufacturer’s instructions. To generate enough genomic DNA to amplify the off-target candidate sites, DNA from three Nucleofections (for U2OS.EGFP cells), two Nucleofections (for K562 cells), or two Lipofectamine LTX transfections was pooled together before performing T7EI. This was done twice for each condition tested, thereby generating duplicate pools of genomic DNA representing a total of four or six individual transfections. PCR was then performed using these genomic DNAs as templates as described above and purified using Ampure XP beads (Agencourt) according to the manufacturer’s instructions. T7EI assays were performed as previously described15 .
Publication 2013
Biological Assay BLOOD Cells DNA Genome HEK293 Cells K562 Cells Lipofectamine Lycopersicon esculentum Plasmids Transfection

Most recents protocols related to «Lipofectamine»

Example 17

To further validate the activity of the DMPK siRNAs, many of the sequences that showed the best activity in the initial screen were selected for a follow-up evaluation in dose response format. Once again, two human cell lines were used to assess the in vitro activity of the DMPK siRNAs: first, SJCRH30 human rhabdomyosarcoma cell line; and second, Myotonic Dystrophy Type 1 (DM1) patient-derived immortalized human skeletal myoblasts. The selected siRNAs were transfected in a 10-fold dose response at 100, 10, 1, 0.1, 0.01, 0,001, and 0.0001 nM final concentrations or in a 9-fold dose response at 50, 5.55556, 0.617284, 0.068587, 0.007621, 0.000847, and 0.000094 nM final concentrations. The siRNAs were formulated with transfection reagent Lipofectamine RNAiMAX (Life Technologies) according to the manufacturer's “forward transfection” instructions. Cells were plated 24 h prior to transfection in triplicate on 96-well tissue culture plates, with 8500 cells per well for SJCRH30 and 4000 cells per well for DM1 myoblasts. At 48 h (SJCRH30) or 72 h (DM1 myoblasts) post-transfection cells were washed with PBS and harvested with TRIzol® reagent (Life Technologies). RNA was isolated using the Direct-zol-96 RNA Kit (Zymo Research) according to the manufacturer's instructions. 10 μl of RNA was reverse transcribed to cDNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturer's instructions. cDNA samples were evaluated by qPCR with DMPK-specific and PPIB-specific TaqMan human gene expression probes (Thermo Fisher) using TaqMan® Fast Advanced Master Mix (Applied Biosystems). DMPK values were normalized within each sample to PPIB gene expression. The quantification of DMPK downregulation was performed using the standard 2−ΔΔCt a method. All experiments were performed in triplicate, with Tables 16A-B, 17A-B, and 18A-B presenting the mean values of the triplicates as well as the calculated IC50 values determined from fitting curves to the dose-response data by non-linear regression.

TABLE 16A
sense strandSEQantisense strandSEQ
sequence (5′-3′)IDsequence (5′-3′)ID
ID #1Passenger Strand (PS)NO:Guide Strand (GS)NO:
535GGGCGAGGUGUCGUGCUUA9349UAAGCACGACACCUCGCCC12053
584GACCGGCGGUGGAUCACGA9398UCGUGAUCCACCGCCGGUC12102
716AUGGCGCGCUUCUACCUGA9530UCAGGUAGAAGCGCGCCAU12234
1028CAGACGCCCUUCUACGCGA9842UCGCGUAGAAGGGCGUCUG12546
1276UUUCGAAGGUGCCACCGAA10090UUCGGUGGCACCUUCGAAA12794
1825UGCUCCUGUUCGCCGUUGA10639UCAACGGCGAACAGGAGCA13343
1945CCCUAGAACUGUCUUCGAA10759UUCGAAGACAGUUCUAGGG13463
2529CUUCGGCGGUUUGGAUAUA11343UAUAUCCAAACCGCCGAAG14047
2558GUCCUCCGACUCGCUGACA11372UGUCAGCGAGUCGGAGGAC14076
2628CCGACAUUCCUCGGUAUUA11442UAAUACCGAGGAAUGUCGG14146
2636CCUCGGUAUUUAUUGUCUA11450UAGACAAUAAAUACCGAGG14154
119mer position in NM_001288766.1

TABLE 16B
IC50
ID #1qPCR2qPCR3qPCR4qPCR5qPCR6qPCR7qPCR8(nM)
535111.9105.4106.382.436.729.535.70.165
58490.590.284.767.838.025.828.30.190
71688.985.281.962.032.619.320.30.181
102888.581.883.061.332.727.331.50.127
127687.085.084.066.140.534.036.40.150
182585.185.983.769.136.225.225.00.259
194585.081.774.444.922.917.717.20.070
252983.381.875.350.624.617.517.70.103
255884.381.174.345.423.413.311.80.088
262885.384.079.559.830.323.525.10.140
263686.386.974.344.019.812.413.00.070
2SJCRH30; 0.0001 nM; % DMPK mRNA
3SJCRH30; 0.001 nM; % DMPK mRNA
4SJCRH30; 0.01 nM; % DMPK mRNA
5SJCRH30; 0.1 nM; % DMPK mRNA
6SJCRH30; 1 nM; % DMPK mRNA
7SJCRH30; 10 nM; % DMPK mRNA
8SJCRH30; 100 nM; % DMPK mRNA

TABLE 17A
sense strandSEQantisense strandSEQ
sequence (5′-3′)IDsequence (5′-3′)ID
ID #1Passenger Strand (PS)NO:Guide Strand (GS)NO:
2600CAAUCCACGUUUUGGAUGA11414UCAUCCAAAACGUGGAUUG14118
2636CCUCGGUAUUUAUUGUCUA11450UAGACAAUAAAUACCGAGG14154
2675CCCCGACCCUCGCGAAUAA11489UUAUUCGCGAGGGUCGGGG14193
2676CCCGACCCUCGCGAAUAAA11490UUUAUUCGCGAGGGUCGGG14194
2679GACCCUCGCGAAUAAAAGA11493UCUUUUAUUCGCGAGGGUC14197
2680ACCCUCGCGAAUAAAAGGA11494UCCUUUUAUUCGCGAGGGU14198
2681CCCUCGCGAAUAAAAGGCA11495UGCCUUUUAUUCGCGAGGG14199
2682CCUCGCGAAUAAAAGGCCA11496UGGCCUUUUAUUCGCGAGG14200
119mer position in NM_001288766.1

TABLE 17B
IC50
ID #1qPCR2qPCR3qPCR4qPCR5qPCR6qPCR7(nM)
2600107.5107.6108.1106.3103.172.731.31
263681.181.174.047.225.711.50.073
267588.188.384.364.638.120.70.151
267688.978.984.472.744.935.60.204
267984.087.382.753.331.413.50.091
268087.485.385.168.544.539.60.110
268187.085.477.649.626.516.00.061
268282.483.977.150.827.331.10.047
2SJCRH30; 0.000094 nM; % DMPK mRNA
3SJCRH30; 0.000847 nM; % DMPK mRNA
4SJCRH30; 0.007621 nM; % DMPK mRNA
5SJCRH30; 0.068587 nM; % DMPK mRNA
6SJCRH30; 0.617284 nM; % DMPK mRNA
7SJCRH30; 5.55556 nM; % DMPK mRNA

TABLE 18A
sense strandSEQantisense strandSEQ
sequence (5′-3′)IDsequence (5′-3′)ID
ID #1Passenger Strand (PS)NO:Guide Strand (GS)NO:
584GACCGGCGGUGGAUCACGA9398UCGUGAUCCACCGCCGGUC12102
716AUGGCGCGCUUCUACCUGA9530UCAGGUAGAAGCGCGCCAU12234
1265UUUACACCGGAUUUCGAAA10079UUUCGAAAUCCGGUGUAAA12783
1297AUGCAACUUCGACUUGGUA10111UACCAAGUCGAAGUUGCAU12815
1945CCCUAGAACUGUCUUCGAA10759UUCGAAGACAGUUCUAGGG13463
1960CGACUCCGGGGCCCCGUUA10774UAACGGGGCCCCGGAGUCG13478
2529CUUCGGCGGUUUGGAUAUA11343UAUAUCCAAACCGCCGAAG14047
2530UUCGGCGGUUUGGAUAUUA11344UAAUAUCCAAACCGCCGAA14048
2531UCGGCGGUUUGGAUAUUUA11345UAAAUAUCCAAACCGCCGA14049
2554CCUCGUCCUCCGACUCGCA11368UGCGAGUCGGAGGACGAGG14072
2628CCGACAUUCCUCGGUAUUA11442UAAUACCGAGGAAUGUCGG14146
2629CGACAUUCCUCGGUAUUUA11443UAAAUACCGAGGAAUGUCG14147
2681CCCUCGCGAAUAAAAGGCA11495UGCCUUUUAUUCGCGAGGG14199
119mer position in NM_001288766.1

TABLE 18B
IC50
ID #1qPCR2qPCR3qPCR4qPCR5qPCR6qPCR7(nM)
58490.877.097.771.945.029.70.228
71696.582.577.064.643.333.90.080
126568.580.968.057.137.525.70.146
129771.467.269.453.540.525.40.171
194571.862.341.729.822.415.30.006
196063.065.462.145.831.128.30.068
252963.558.749.231.122.921.90.017
253069.366.753.143.238.824.50.016
253169.972.457.340.235.425.60.018
255468.270.151.243.032.117.30.043
262869.767.962.538.431.617.10.042
262972.165.669.042.134.413.70.078
268182.491.587.655.529.319.60.084
2DM1 myoblasts; 0.000094 nM; % DMPK mRNA
3DM1 myoblasts; 0.000847 nM; % DMPK mRNA
4DM1 myoblasts; 0.007621 nM; % DMPK mRNA
5DM1 myoblasts; 0.068587 nM; % DMPK mRNA
6DM1 myoblasts; 0.617284 nM; % DMPK mRNA
7DM1 myoblasts; 5.55556 nM; % DMPK mRNA

Full text: Click here
Patent 2024
Cell Lines Cells DNA, Complementary Down-Regulation Gene Expression Homo sapiens Lipofectamine Myoblasts Myoblasts, Skeletal Myotonic Dystrophy NM-107 Patients PPIB protein, human Reverse Transcription Rhabdomyosarcoma RNA, Messenger RNA, Small Interfering Tissues Transfection trizol
Not available on PMC !

Example 2

iPS cells were prepared according to protocols known in the art and seeded in a Geltrex®-Matrix coated 12-well culture dish. Transfection was performed in iPSCs with 3 ul of Lipofectamine® 2000 or 3 ul of Lipofectamine® 3000 as indicated and according to manufacturer's instructions, to deliver a GeneArt® CRISPR Nuclease vector targeting the HPRT locus. Transfection was also performed with GeneArt® CRISPR Nuclease RNA editing system targeting the HPRT locus and 3 ul of Formulation 21 lipid aggregate complex. RNA editing system utilizes a Cas9 mRNA, which was prepared via in vitro transcription with the Ambion® mMESSAGE mMACHINE® Kit, and a gRNA which was transcribed using the Ambion® MEGAshortscript™ Kit. Cells were harvested 72-hours post-transfection and cleavage efficiency was determined using the GeneArt® Genomic Cleavage Detection Kit.

Results are shown in FIG. 2A and FIG. 2B, which clearly demonstrate that using an mRNA based form of Cas9 with a guide-RNA for gene editing with the lipid aggregates described herein for transfection results in at least 4-fold more targeted cleavage of the host cell genome when compared to standard DNA based editing approaches.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, the descriptions and examples should not be construed as limiting the scope of the invention. The disclosures of all patent and scientific literature cited herein are expressly incorporated in their entirety by reference.

Full text: Click here
Patent 2024
Cells Cloning Vectors Clustered Regularly Interspaced Short Palindromic Repeats Cytokinesis Genes Genome Hyperostosis, Diffuse Idiopathic Skeletal Induced Pluripotent Stem Cells Lipids Lipofectamine lipofectamine 2000 RNA, Messenger Transcription, Genetic Transfection
Not available on PMC !

Example 7

ncRNA performance can be modified by adding a cap structure to the 5′ end and/or adding a poly(A) tail at the 3′ end, as depicted in FIG. 55. As shown in FIG. 56, using ncRNA with either or both protection by cap and tail lowered indels as compared uncapped/untailed ncRNAs. In this experiment, a 4 component all-RNA system (RT mRNA+Cas9 mRNA+ncRNA-sgRNA+sgRNA) was delivered to HEK293T cells by Lipofectamine MessengerMAX. All RNA was transfected at a fixed amount RT mRNA 100 ng, ncRNA-sgRNA 400 ng, Cas9 mRNA 100 ng, and sgRNA 5 ng. ncRNA-gRNA fusion was either capped (+cap −tail) or poly-A tailed (−cap +tail) or both capped and poly-A tailed (+cap +tail). Using RNA without end protection (−cap −tail) produced ˜4.5% precise edits and the editing was dependent on retron since the absence of RT abrogated precise editing. Using RNA with either or both protection by cap and tail produced lower precise editing (left graph) but lowered indels (right graph) than without cap and tail.

Full text: Click here
Patent 2024
Cells INDEL Mutation Lipofectamine RNA, Messenger RNA, Untranslated Tail
Not available on PMC !

Example 101

Selected gRNAs were tested in a form of single-stranded gRNA with various chemical modifications (see Table 6 above). Transfection of the gRNAs was performed using Lipofectamine MessengerMax according to the manufacture protocol. The gRNAs activities at 12.5 nM are presented below in Table 7.

TABLE 7
gRNA activity in HepG2 and PHH transfected with Cas9
mRNA and gRNA
gRNAActivity, In-del %SDCell type
CH31-CTX043.9680555617.657448HepG2
CH31-CTX141.1226190520.441894HepG2
CH32-AltR13.8916666713.517525HepG2
CH31-CTX220.36944444 8.9200085PHH

These studies demonstrate that single stranded gRNAs transfected with Cas9 mRNA were active in both HepG2 cells and primary human hepatocytes.

Full text: Click here
Patent 2024
Cells Hepatocyte Hep G2 Cells Homo sapiens Lipofectamine RNA, Messenger Transfection

Example 18

The selected siRNAs were transfected at 100, 10, 1, 0.1, 0.01, 0,001, and 0.0001 nM final concentrations into C2C12 mouse muscle myoblasts (ATCC® CRL-1772™). The siRNAs were formulated with transfection reagent Lipofectamine RNAiMAX (Life Technologies) according to the manufacturer's “forward transfection” instructions. Cells were plated 24 h prior to transfection in triplicate on 96-well tissue culture plates, with 4000 cells per well for C2C12 seeding. At 48 h post-transfection cells were washed with PBS and harvested with TRIzol® reagent (Life Technologies). RNA was isolated using the Direct-zol-96 RNA Kit (Zymo Research) according to the manufacturer's instructions. 10 μl of RNA was reverse transcribed to cDNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturer's instructions. cDNA samples were evaluated by qPCR with DMPK-specific and PPIB-specific TaqMan mouse gene expression probes (Thermo Fisher) using TaqMan® Fast Advanced Master Mix (Applied Biosystems). DMPK values were normalized within each sample to PPIB gene expression. The quantification of DMPK downregulation was performed using the standard 2−ΔΔCt method. All experiments were performed in triplicate, with the results shown in FIG. 17. Four DMPK siRNAs (the numbers indicated in the FIG. 17 legend correspond to the ID # that is listed in Table 19 (Tables 19A-19B)) were shown to effectively cross-react with mouse DMPK mRNA, producing robust mRNA knockdown in the mouse C2C12 myoblast cell line. Two of the siRNAs (ID #s 535 and 1028) were slightly less effective and only produced approximately 70% maximum mRNA knockdown. Two of the siRNAs (ID #s 2628 and 2636) were more effective and produced approximately 90% maximum mRNA knockdown.

Full text: Click here
Patent 2024
Cell Lines Cells Cross Reactions DNA, Complementary Down-Regulation Gene Expression Lipofectamine Mus Muscle Tissue Myoblasts PPIB protein, human Reverse Transcription RNA, Messenger RNA, Small Interfering Tissues Transfection trizol

Top products related to «Lipofectamine»

Sourced in United States, China, Germany, Japan, United Kingdom, France, Canada, Italy, Australia, Switzerland, Denmark, Spain, Singapore, Belgium, Lithuania, Israel, Sweden, Austria, Moldova, Republic of, Greece, Azerbaijan, Finland
Lipofectamine 3000 is a transfection reagent used for the efficient delivery of nucleic acids, such as plasmid DNA, siRNA, and mRNA, into a variety of mammalian cell types. It facilitates the entry of these molecules into the cells, enabling their expression or silencing.
Sourced in United States, China, United Kingdom, Germany, Japan, France, Canada, Switzerland, Denmark, Belgium, Italy, Australia, Singapore, Spain, Colombia, Sweden, Netherlands, New Zealand, Poland, Pakistan, Lithuania
Lipofectamine RNAiMAX is a transfection reagent designed for efficient delivery of small interfering RNA (siRNA) and short hairpin RNA (shRNA) into a wide range of cell types. It is a cationic lipid-based formulation that facilitates the uptake of these nucleic acids into the target cells.
Sourced in United States, China, United Kingdom, Germany, Canada, Japan, Denmark, Australia, France, Italy, Switzerland
Lipofectamine 3000 reagent is a transfection reagent used to facilitate the delivery of nucleic acids, such as plasmid DNA, into mammalian cells. It is designed to improve transfection efficiency and cell viability.
Sourced in United States, China, Germany, United Kingdom, Japan, France, Canada, Italy, Australia, Belgium
Lipofectamine RNAiMAX reagent is a lipid-based transfection reagent designed for efficient delivery of small interfering RNA (siRNA) and microRNA (miRNA) into a variety of mammalian cell types for gene silencing applications. The reagent is formulated to complex with and deliver nucleic acids into cells, enabling effective knockdown of target gene expression.
Sourced in United States, China, Germany, United Kingdom, Japan, Italy, France, Denmark, Belgium, Canada, Australia, Moldova, Republic of, Dominican Republic, Sweden, Singapore
Lipofectamine RNAiMAX is a transfection reagent designed for efficient delivery of small interfering RNA (siRNA) and other nucleic acids into mammalian cells. It is optimized to facilitate cellular uptake and intracellular trafficking of siRNA, leading to effective gene silencing.
Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.
Sourced in United States, United Kingdom, Germany, China, Japan, Canada, France, Switzerland, Italy, Australia, Belgium, Spain, Denmark, Ireland, Netherlands, Holy See (Vatican City State), Israel
Opti-MEM is a cell culture medium designed to support the growth and maintenance of a variety of cell lines. It is a serum-reduced formulation that helps to reduce the amount of serum required for cell culture, while still providing the necessary nutrients and growth factors for cell proliferation.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Germany, United Kingdom, China, Canada, Japan, Italy, France, Netherlands, Switzerland, Denmark, Belgium, Australia
Lipofectamine is a cationic lipid-based transfection reagent used for the delivery of nucleic acids, such as plasmid DNA, small interfering RNA (siRNA), and messenger RNA (mRNA), into eukaryotic cells. It facilitates the formation of lipid-nucleic acid complexes that can be efficiently taken up by cells, enabling the introduction of genetic material into the cells for various research and experimental applications.
Sourced in United States, China, Germany, United Kingdom, Australia, France, Italy, Japan, Netherlands, Canada
Lipofectamine 3000 is a transfection reagent designed to facilitate the delivery of DNA, RNA, or other macromolecules into mammalian cells. It is a proprietary formulation that enhances nucleic acid uptake and expression in a wide range of cell types.

More about "Lipofectamine"

Lipofectamine is a widely used cationic lipid-based transfection reagent that facilitates the delivery of nucleic acids, such as DNA and RNA, into eukaryotic cells.
This effective encapsulation system enables the uptake and subsequent expression of genetic material within target cells, making it an indispensable tool in modern cell biology research.
Lipofectamine comes in various formulations, including Lipofectamine 3000, Lipofectamine RNAiMAX, and the original Lipofectamine 2000.
These reagents are compatible with a variety of cell types and are often used in conjunction with Opti-MEM and FBS to optimize transfection efficiency.
Utilizing Lipofectamine, researchers can study gene function, perform gene knockdown experiments, and generate genetically modified cell lines.
However, optimizing Lipofectamine protocols can be a challenging and time-consuming process.
Fortunately, AI-driven platforms like PubCompare.ai offer an effortless way to compare Lipofectamine transfection protocols from literature, preprints, and patents, helping researchers identify the most effective and reproducible methods to enhance their research accuracy and reproducibility.
Whether you're working with Lipofectamine 3000, Lipofectamine RNAiMAX, or any other Lipofectamine formulation, PubCompare.ai can help you streamline your workflow and get the most out of this indispensable transfection reagent.
Explore the platform today and take your cell biology research to the next level.