Mannitol
It has diverse applications in the pharmaceutical, food, and cosmetic industries.
Mannitol is commonly used as a diuretic, laxative, and osmotic agent in the treatment of various medical conditions, including increased intracranial pressure, glaucoma, and cerebral edema.
It also serves as a bulking agent and sweetener in the formulation of medications, food products, and personal care items.
Mannitol is known for its low caloric value and ability to maintain moisture, making it a popular choice in suger-free and moisture-retaining formulations.
Reseach on the efficacy and reproducibility of mannitol-based products is crucial for optimizing its clinical and commercial utilization.
PubCompare.ai provides an AI-driven platform to quickly locate and compare mannitol research protocols from literature, preprints, and patents, enhancing the accuracy and reproducibilty of mannitol experiments.
Most cited protocols related to «Mannitol»
For isolating protoplasts from etiolated rice seedlings, the sterilized seeds were germinated under light for 3 days, and then moved to the dark for another 4-7 days. The isolation procedure was the same as that for isolation of green tissue protoplasts described above.
Escherichia coli TOP10 (Invitrogen) and E. coli CA434 [39] (link) were cultured in Luria-Bertani (LB) medium, supplemented with chloramphenicol (25 µg/ml), where appropriate. Routine cultures of C. difficile 630 Δerm[40] (link) and C. difficile R20291 were carried out in BHIS medium (brain heart infusion medium supplemented with 5 mg/ml yeast extract and 0.1% [wt/vol] L-cysteine) [41] (link). C. difficile medium was supplemented with D-cycloserine (250 µg/ml), cefoxitin (8 µg/ml), lincomycin (20 µg/ml), and/or thiamphenicol (15 µg/ml) where appropriate. A defined minimal media [18] (link) was used as uracil-free medium when performing genetic selections. A basic nutritive mannitol broth for growth assays of C. difficile strains were prepared as follows : Proteose peptone no. 2 4% [wt/vol] (BD Diagnostics, USA), sodium phosphate dibasic 0.5%[wt/vol], potassium phosphate monobasic 0.1%[wt/vol], sodium chloride, 0.2% [wt/vol], magnesium sulfate, 0.01% [wt/vol], mannitol, 0.6% [wt/vol] with final pH at +/−7.35. For solid medium, agar was added to a final concentration of 1.0% (wt/vol). Clostridium sporogenes ATCC 15579 was cultivated in TYG media [7] (link). All Clostridium cultures were incubated in an anaerobic workstation at 37°C (Don Whitley, Yorkshire, United Kingdom). Uracil was added at 5 µg/ml, and 5-Fluoroorotic acid (5-FOA) at 2 mg/ml. All reagents, unless noted, were purchased from Sigma-Aldrich.
Most recents protocols related to «Mannitol»
Example 6
Ceres cDNA 12723147 encodes an Arabidopsis putative aldo/keto reductase. Ectopic expression of Ceres cDNA 12723147 under the control of the CaMV35S promoter induces the following phenotypes:
-
- Germination on high concentrations of polyethylene glycol (PEG), mannitol and abscissic acid (ABA).
- Continued growth on high concentration of PEG, mannitol and ABA.
Generation and Phenotypic Evaluation of T1 Lines Containing 35S::cDNA 12723147.
Wild-type Arabidopsis Wassilewskija (WS) plants were transformed with a Ti plasmid containing cDNA 12723147 in the sense orientation relative to the CaMV35S constitutive promoter. The Ti plasmid vector used for this construct, CRS338, contains PAT and confers herbicide resistance to transformed plants. Ten independently transformed events were selected and evaluated for their qualitative phenotype in the T1 generation. No positive or negative phenotypes were observed in the T1 plants.
Screens of Superpools on High PEG, Mannitol, and ABA as Surrogate Screens for Drought Tolerance.
Seeds from 13 superpools (1,200 T2 seeds from each superpool) from the CaMV35S or 32449 over-expression lines were tested on 3 drought surrogate screens (high concentrations of PEG, mannitol, and ABA) as described above. T3 seeds were collected from the resistant plants and analyzed for resistance on all three surrogate drought screens.
Once cDNA 12723147 was identified in resistant plants from each of the three surrogate drought screens, the five individual T2 events containing this cDNA (SR01013) were screened on high PEG, mannitol, and ABA to identify events with the resistance phenotype.
Superpools (SP) are referred to as SP1, SP2 and so on. The letter following the hyphen refers to the screen (P=PEG, M=mannitol, and A=ABA) and the number following the letter refers to a number assigned to each plant obtained from that screen on that superpool. For example, SP1-M18 is the 18th plant isolated from a mannitol screen of Superpool 1.
Qualitative and Quantitative Analysis of 2 Independent Events Representing 35S::cDNA 12659859 (SR01010) on PEG, Mannitol and ABA
To identify two independent events of 35S::cDNA 12659859 showing PEG, mannitol, and ABA resistance, 36 seedlings from each of two events, SR01013-01 and -02 were screened as previously described. BastaR segregation was assessed to verify that the lines contained a single insert segregating in a 3:1 (R:S) ratio as calculated by a chi-square test (Table 6-1). Both lines (01 and 02) segregated for a single insert in the T2 generation (Table 1)
Lines SR01013-01 and -02 were chosen as the two events because they had a strong and consistent resistance to PEG, mannitol and ABA. The controls were sown the same day and in the same plate as the individual lines. The PEG (Tables 6-2 and 6-3), mannitol (Tables 6-4 and 6-5) and ABA (Tables 6-6 and 6-7) segregation ratios observed for SR01013-01 and -02 are consistent with the presence of single insert as demonstrated by chi-square, similar to what we observed for BastaR resistance (Table 6-1).
The progeny from one resistant T2 plant from each of these two events were tested in the same manner as the T2. Resistance to PEG, mannitol and ABA was also observed in the T3 generation. Taken together, the segregation of resistant seedlings containing cDNA 12723147 from two events on all three drought surrogate screens and the inheritance of this resistance in a subsequent generation, provide strong evidence that cDNA 12723147 when over-expressed can provide tolerance to drought.
EXAMPLE 7
Ticagrelor and pullulan were accurately weighed and dissolved in distilled water. This solution was mixed well followed by the addition of plasticizers and superdisintegrant. Then the resultant homogeneous solution was poured into a Petri dish (diameter 6 cm) and dried in an oven at 600 C for 24 h. The film was carefully removed from the Petri dish and cut into desired size (2×2 cm2).
Example 12
Protocol for Preparing the Compound (I) Core Tablet: The Compound (I) drug substance, Microcrystalline Cellulose PH 101, Mannitol 100SD, and Hypromellose K100 Premium LV (if required) are weighted and screened through a suitably sized sieve. The required quantity of each is transferred into a suitably sized blender and mechanically mixed.
The Crospovidone CL is weighed and screened through a suitably sized sieve. The required quantity of Crospovidone is transferred into the above-mentioned suitably sized container.
The sodium stearyl fumarate is weighed and screened through a suitably sized sieve. The required quantity is transferred into the above-mentioned suitably sized container and mechanically mixed. This provides the Compound (I) Modified Release Tablet Blend for compression.
The above-mentioned Compound (I) Modified Release Tablet Blend for compression is individually weighed and transferred into a tablet die for compression using a suitable tablet press. This provides the Compound (I) Modified Release Core Tablet.
This core tablet is placed into a container closure system.
EXAMPLE 2
-
- 1) Dissolve Gelatin and other ingredients in purified water under stirring at 200-500 rpm.
- 2) Make up the final volume of the solution using purified water.
- 3) Mix the solution under stirring at 200 to 500 rpm for further 15 min.
- 4) Dose the solution into each cavity of preformed blister sheets (preferably using dispensing pipette).
- 5) Freeze the filled blisters at a temperature in the range of −20 to −110° C.
- 6) Freeze dry the blisters in a lyophilizer.
- 7) Place the blister sheet containing dried lyophilisates on the punched carrier web of the blister packaging machine to transport the blister sheets through the sealing station of the packaging machine
- 8) Seal the blister with a lidding foil and punch into final blisters.
Example 5
The pulverized vicagrel was subjected to stirred mixing with pregelatinized starch, mannitol, low-substituted hydroxypropyl cellulose, and hydroxypropyl methyl cellulose in a high-shear granulator for 5 min, stirred at a linear speed of 4 m/s, and sheared with a shearer at 800 rpm, and granulated with added water, the particles were deagglomerated through a 10-mesh sieve, and dried in a fluidized bed while maintaining the bed temperature below 60° C. during drying. The particles were removed, and sized through a 24-mesh sieve, and sodium stearyl fumarate was added and mixed, and tableting was performed on a 10-punch rotary tablet press (ZP-10A, Sinopharm Longli), with a 8 mm shallow concave punch.
Top products related to «Mannitol»
More about "Mannitol"
It has diverse applications in the pharmaceutical, food, and cosmetic industries.
Mannitol is commonly used as a diuretic, laxative, and osmotic agent in the treatment of various medical conditions, including increased intracranial pressure, glaucoma, and cerebral edema.
It also serves as a bulking agent and sweetener in the formulation of medications, food products, and personal care items.
Mannitol is known for its low caloric value and ability to maintain moisture, making it a popular choice in sugar-free and moisture-retaining formulations.
Fetal bovine serum (FBS) and bovine serum albumin (BSA) are commonly used in cell culture media, such as Dulbecco's Modified Eagle Medium (DMEM), to provide essential nutrients and growth factors for cells.
Sucrose and D-glucose are also important carbohydrate sources in cell culture and various food and pharmaceutical applications.
Research on the efficacy and reproducibility of mannitol-based products is crucial for optimizing its clinical and commercial utilization.
PubCompare.ai provides an AI-driven platform to quickly locate and compare mannitol research protocols from literature, preprints, and patents, enhancing the accuracy and reproducibility of mannitol experiments.
By utilizing this tool, researchers can improve the quality and consistency of their mannitol-related studies and formulations.