Mannose
It plays a key role in various biological processes, such as cell signaling, immune function, and protein folding.
Mannose can be obtained from dietary sources, such as fruits and vegetables, or synthesized endogenously.
Researchers are actively investigating the potential therapeutic applications of mannose, including its use in the treatment of infections, cancer, and metabolic disorders.
PubCompare.ai can help streamline your mannose research by providing access to the latest protocols and literature, enabling you to identify the most effective and reproducible approaches.
Experienec the power of AI-driven research optimization today.
Most cited protocols related to «Mannose»
ESTIMATE algorithm: method that uses gene expression signatures to infer the fraction of stromal and immune cells in tumor samples30 (link);
Curated signatures: upper and lower normal colon crypt compartments51 , epithelial and mesenchymal markers7 (link), WNT52 and MYC downstream target53 , epithelial-mesenchymal transition core genes and TGFβ pathway54 , intestinal stem cells55 , matrix remodeling (REACTOME) and wound-response (GO BP);
Canonical genesets: MAPK and PI3K (GO BP), SRC, JAK-STAT, caspases (BIOCARTA), proteosome (KEGG), Notch, cell cycle, translation and ribosome, integrin beta3, VEGF/VEGFR interactions (REACTOME);
Immune activation: immune response (GO BP), PD1 activation (REACTOME), infiltration with T cytotoxic cells (CD8)56 and T helper cells (TH1) in cancer samples57 ,58 , infiltration with Natural Killer (NK) cells59 and follicular helper T (TFH) cells60 in cancer samples, activation of T helper 17 (TH17) cells61 , regulatory T cells (Treg)62 or myeloid-derived suppressor cells (MDSC)63 ;
Metabolic activation: sugar, amino acid, nucleotide, glucose, pentose, fructose, mannose, starch, sucrose, galactose, glutathione, nitrogen, tyrosine, glycerophospholipid, fatty acid, arachnoid acid, linoleic acid (KEGG), glutamine (GO BP), lysophospholipid (PID).
In both cases, the affinity-purified Env proteins were further purified to size homogeneity using size exclusion chromatography (SEC) on a Superdex 200 26/60 column (GE Healthcare). A Superose 6 column was sometimes used for analytical or preparative purposes. The trimer fractions and, occasionally also the SOSIP gp140 monomer fractions, were collected and pooled. Protein concentrations were determined using either a bicinchonic acid-based assay (BCA assay; Thermo Scientific, Rockford, IL) or UV280 absorbance using theoretical extinction coefficients [66] .
Most recents protocols related to «Mannose»
Example 3
The genes for Candida antartica lipases A and B, human transferrin, and the human CH2 domain from IgG were integrated into the SuperM5 genome using standard transformation methods. In all cases significant amounts of protein were produced and secreted into the medium. Transformed strains and media-containing protein were tested for glycan analysis using previously published methods. In all cases, the glycan profiles for the test proteins and for the strain glycoproteins demonstrated a mannose-5 glycan structure with no other higher mannose structures detected by the methods used.
Example 2
SuperM5 was stored in different conditions at −80° C., −4° C., 20° C. and at room temperature. Strains were stored as frozen glycerol stocks and as stab cultures. Different cultures were stored and thawed for different experiments and for shipping to collaborators for testing. In all cases the strains recovered, plated and cultured similar to the parent Pichia pastoris GS115 strain and grew in both complex and defined media similar to the parent strains. The SuperM5 strains transformed similarly as the parent strain and proteins were expressed with the mannose-5 glycosylation as the predominate glycoform, or the only glycoform. Strains have been repeatedly stored and regrown to establish robustness of the SuperM5 strains.
Once the molecular weight distributions were determined, low and high molecular weight fractions that composed the crude EPS obtained at 20°C were separated. For this purpose, EPS solutions (0.2% w/v) were centrifuged through a Vivaspin™ ultrafiltration spin column 100 KDa MWCO, (Sartorious, Goettingen, Germany) for 20 min at 6000 g, eluting only the low MW fraction. Subsequently, high MW fraction retained in the column was eluted using hot distilled water. The eluted fractions were passed through a Vivaspin column (cut-off 30KDa) in order to separate the middle and low MW fraction of EPS.
Monosaccharide composition of crude EPS and their fractions were determined by gas chromatography as previously described (Notararigo et al., 2013 (link)). Briefly, 1–2 mg of EPS were hydrolyzed in 1 mL of 3 M trifluoroacetic acid (1 h at 120°C). The monosaccharides obtained were converted into alditol acetates by reduction with NaBH4 and subsequent acetylation. The samples were analyzed by gas chromatography in an Agilent 7890A coupled to a 5975C mass detector, using an HP5-MS column with helium as carrier gas at a flow rate of 1 mL/min. For each run, 1 μL of sample was injected (with a Split 1:50) and the following temperature program was performed: the oven was heat to 175°C for 1 min; the temperature was increased to 215°C at a rate of 2.5°C/min and then increased to 225°C at 10°C/min, keeping it constant at this temperature for 1.5 min. Monosaccharides were identified by comparison of retention times with standards (arabinose, xylose, rhamnose, galactose, glucose, mannose, glucosamine and galactosamine) analyzed under the same conditions. Calibration curves were also processed for monosaccharide quantification. Myo-inositol was added to each sample as internal standard.
To detect GlcN-PI or GlcN-(acyl)-PI after inositol-labeling, PIGW-KO, PIGS-KO, PIGS-HRD1-DKO, PIGS-HRD1-ARV1-TKO, PIGS-HRD1-CD55-TKO, and HA-CD55 rescued cells were washed with inositol-free DMEM and then incubated in 1 ml of reaction medium B (inositol-free DMEM buffered with 20 mM Hepes, pH 7.4) supplemented with 10% dialyzed FBS in the presence of 10 μCi of myo-[2-3H] inositol (PerkinElmer) for 24 h. After metabolic labeling, the cells were washed twice with 1 ml of cold PBS and pelleted by centrifugation. Lipids and radiolabeled GPIs were extracted with 1-butanol partitioning, separated by HPTLC (Merck), and visualized using an FLA 7000 analyzer.
Top products related to «Mannose»
More about "Mannose"
As a component of glycoproteins and glycolipids, mannose is essential for cell signaling, immune function, and protein folding.
This sugar can be obtained from dietary sources, such as fruits and vegetables, or synthesized endogenously through metabolic pathways.
Beyond its fundamental biological functions, researchers are actively investigating the potential therapeutic applications of mannose.
Its use in the treatment of infections, cancer, and metabolic disorders is an area of growing interest.
Closely related monosaccharides, such as galactose, glucose, xylose, arabinose, and rhamnose, also exhibit unique properties and roles in the body, making them subject to extensive scientific exploration.
To streamline your mannose research, PubCompare.ai offers an AI-driven platform that helps you locate the best protocols from literature, pre-prints, and patents.
By providing accurate comparisons, the tool enables you to identify the most reproducible and effective approaches, empowering you to uncover the insights you need with just a few clicks.
Experience the future of research optimization and unlock the full potential of your mannose studies today!