Ethical permission for the study was granted by the Gambian Government and Medical Research Council Ethics Committee, and Gambian National DNA Collection Guidelines were followed regarding the handling of genetic material and information. Parental written informed consent was obtained for all study participants.
A cohort of 780 children aged from 2 to 6 y was recruited from ten rural villages in the West Kiang region of The Gambia at the start of the malaria season, July 2001, with follow-up to December 2001/January 2002. All children were eligible except those with serious chronic illness or those enrolled in another study.
Figure 1 provides an overview of the study population. Ethnic groups were Mandinka (nine villages, 700 children) and Fulani (one village, 80 children). Children had anthropometric measurements taken and were examined by the study clinician. All children received a 3-d course of mebendazole at the start of the study for possible hookworm infection. A blood sample was collected for full blood count, malaria slide, iron status assays, haptoglobin concentration, α-1-antichymotrypsin (a marker of inflammation), and DNA extraction. Children with a temperature over 37.5 °C had a malaria blood film, appropriate clinical treatment, and a blood sample 2 wk later after recovery from illness. Children with malaria parasites on blood film were treated with chloroquine and pyrimethamine-sulfadoxine (Fansidar) according to Gambian Government guidelines. This procedure was repeated at the end of the malaria season for each child.
Malaria incidence is highly seasonal in The Gambia with the majority of malaria cases occurring between September and December [
24 (link)]. Haemoglobin levels in children from the study area were previously found to be highest in July and lowest in November [
25 (link)]. We thus sampled at the start and end of the malaria season to assess the effect of haptoglobin genotype on haemoglobin levels in the malaria season compared to baseline levels. Children were followed across the malaria season to control for multiple individual factors that may influence haemoglobin levels.
A cohort of 780 children aged from 2 to 6 y was recruited from ten rural villages in the West Kiang region of The Gambia at the start of the malaria season, July 2001, with follow-up to December 2001/January 2002. All children were eligible except those with serious chronic illness or those enrolled in another study.
Malaria incidence is highly seasonal in The Gambia with the majority of malaria cases occurring between September and December [
24 (link)]. Haemoglobin levels in children from the study area were previously found to be highest in July and lowest in November [
25 (link)]. We thus sampled at the start and end of the malaria season to assess the effect of haptoglobin genotype on haemoglobin levels in the malaria season compared to baseline levels. Children were followed across the malaria season to control for multiple individual factors that may influence haemoglobin levels.
Full text: Click here