The largest database of trusted experimental protocols
> Chemicals & Drugs > Organic Chemical > Methyl orange

Methyl orange

Methyl orange is a commonly used organic dye with a wide range of applications in research and industry.
It is a water-soluble anionic azo dye that appears as an orange-red crystalline powder.
Methyl orange is frequently employed as a pH indicator, changing color from red in acidic solutions to yellow in basic environments.
In the laboratory, it is often used in analytical chemistry, spectroscopic analysis, and various titration procedures.
Methyl orange's unique chemical properties and color-changing behavior make it a valuable tool for researchers studying pH-dependent processes, colorimetric assays, and other applications requiring sensitive dye-based detection.
Reserachers can leverage PubCompare.ai's advanced protocol comparison tools to streamline their methyl orange-related studies and improve the reproducibility of their findings.

Most cited protocols related to «Methyl orange»

To measure dynamic bone formation parameters, mice (wild-type) were injected subcutaneously with calcein (Sigma, St Louis, MO, USA) [30mg/kg body weight] on day 9 before tissue harvest and xylenol orange (Sigma, St Louis, MO, USA) [90mg/kg body weight] on day 2 before tissue harvest.
Both human core bone samples and mouse hind limbs were excised, cleaned of soft tissue, and fixed in 3.7% formaldehyde for 72 hours. Isolated bone tissue were dehydrated in graded alcohols (70 to 100%), cleared in xylene and embedded in methyl methacrylate. Plastic tissue blocks were cut into 5µm sections using a Polycut-S motorized microtome(Reichert-Jung, Nossloch, Germany).
After the mouse bone sections were used to measure the fluorochrome labeled surface and interlabel width, they were deplasticized in xylene and then stained with Goldner’s Trichrome.
Randomly selected regions of interest (ROIs) within three sections per limb were visualized for fluorochrome labeling using a Nikon Eclipse 90i microscope and Nikon Plan Fluor 10X objective. ROIs from the same sections were visualized using a Nikon Eclipse 90i microscope and 4X and 20X objectives for Goldner’s Trichrome staining. Image capture was performed using NIS Elements Imaging Software 3.10 Sp2 and a Photometrics Coolsnap EZ camera. The Bioquant Osteo II digitizing system (R&M Biometrics, Nashville, TN) according to the manufacturer’s instructions, or sequentially Adobe Photoshop® and Image J software, were used for image analysis. The following primary measurements for dynamic parameters of bone formation were collected from the trabecular surface in defined ROIs (100 µm distal to the growth plate and 50 µm in from the endosteal cortical bone) at 100X magnification: single-label perimeter (sL.PM), double-labeled perimeter measured along the first label (dL.Pm) and interlabel distance. The same sections were then evaluated under brightfield microscopy after Goldner’s Trichrome staining to determine static parameters of bone formation including: tissue volume (TV), bone volume (BV) and osteoid volume (OV).
Publication 2012
Body Weight Bones Bone Tissue Cancellous Bone Compact Bone Epiphyseal Cartilage Ethanol Fluorescent Dyes fluorexon Formaldehyde Homo sapiens Methylmethacrylate Microscopy Microtomy Mus Osteogenesis Perimetry Tissue Harvesting Tissues Xylene xylenol orange

ChemicalsDOX (Ebewe Pharma co. Austria), nZnO (Sigma-Aldrich, particle size<50 nm [TEM], purity >97%), Ham’sF10, NaHCO3, eosin-Y, ethanol, formalin, hematoxylin, paraffin, Carnoy’s fixative (methanol/Acetic acid; 1/3), glutaraldehyde, acridine orange, 1,1,3,3,-tetra ethoxy-propane, trichloroacetic acid, n-butanol, 2,4,6-tripyridyl-s-triazine (TPTZ), 2- thiobarbituric acid (TBA), acetic acid, and phosphate buffer (Merck Chemical Co. Darmstadt, Germany) were used in this study.
Preparation of nZnO suspension NZnO particles were suspended in 1% sdium carboxy methyl cellulose as stabilizer or surfactant, stirred with magnetic stirrer for 5 minutes and then dispersed by ultrasonic vibration for 15 min (21 -23 (link)). In order to avoid the aggregation of the particles fresh suspension was prepared before every use.
Animal treatmentsIn this experimental study, 24 adult sexually mature male (4 months old weighing 220-250 g) Wistar rats were obtained from Razi Vaccine and Serum Research Institute (Tehran). They were kept under standard conditions of temperature (23±2oC), and 12h light/dark period, and fed with a standard pellet diet and water ad libitum. Animal handling and care were performed in accordance with the guidelines established by the Canadian Council on Animal Care. In this study, four groups each containing six male rats were used.
Treatment groups were as follows: group 1 received normal saline by injection (ip) daily, group 2 received DOX (6 mg/kg/day) dissolved in normal saline, group 3 received nZnO (5 mg/kg/day) dissolved in normal saline by ip injection, and group 4 received DOX (6 mg/kg/day) and nZnO (5 mg/kg/day) following pretreatment with nZnO one day before. All groups were treated for 3 days.
SamplingAfter 28 days, the animals were euthanized by CO2 exposure and were killed by decapitation. Blood samples were collected in vials containing heparin.
The plasma was separated and kept at -80oC until analysis of LH, FSH, testosterone, and toxic stress markers including cellular lipid peroxidation (LPO) and total antioxidant power (TAP). Epididymes were removed, cleaned of adhering connective tissue, weighed and perfused with cold (0.9%) NaCl. Radioimmunoassay kits were used to determine concentrations of LH, FSH, and testosterone. The study was approved by the ethic committee of the Razi Institute.
LPO and TAPConcentration of LPO in plasma was determined by measurement of malonedialdehyde and other lipid peroxide aldehydes that react with TBA known as TBA-reactive substances (TBARS). The absorption of the TBARS was deterImined spectrophotometrically at 532 nm using 1, 1, 3, 3-tetraethoxypropan as standard (24 (link)). TAP of plasma and testis was determined by measuring their ability to reduce Fe3+ to Fe2+. The complex between Fe2+ and TPTZ gives a blue color with absorbency at 593 nm (25 ).
Sperm characteristicsEpididymal sperms were collected by slicing the epididymes in 5 mL of Ham’s F10 and incubating for 5 min at 37oC in an atmosphere of 5% CO2 to allow sperm to swim out of the epididymal tubules. One drop of sperm suspension was placed on a microscope slide, and a cover slip was placed over the droplet. At least 10 microscopic fields were observed at 400× magnification using a phase contrast microscope, and the percentage of motile sperm was evaluated microscopically within 2-4 min of their isolation from the epididymes and was considered as a percentage of motile sperm of the total sperm counted.
Epididymal sperm counts were obtained by the method described in the WHO Manual (1999). Briefly, 5 μl aliquot of epididymal sperm was diluted with 95 μl of diluent (0.35% formalin containing 5% NaHCO3 and 0.25% trypan blue) and approximately 10 μl of this diluted specimen was transferred to each of the counting chambers of the hemocytometer and was allowed to stand for 5 min in a humid chamber to prevent drying. The cells sediment during this time and were counted with a light microscope at 400× (26 ).
A 20 μl of sperm suspension was mixed with an equal volume of 0.05% eosin-Y. After 2 mins incubation at room temperature, slides were viewed by bright-field microscope with magnification of 400×. Dead sperms appeared pink and live sperms were not stained. Two hundred sperms were counted in each sample and viability percentages were calculated. For analysis of morphological abnormalities, sperm smears were drawn on clean and grease-free slides, and allowed to air dry overnight. The slides were stained with 1% eosin-Y/5% nigrosin and examined at 400× for morphological abnormalities such as amorphous, bicephalic, coiled, or abnormal tails (26 , 27 (link)).
Staining of spermatozoa with acridine orangeAcridine orange staining was used to monitor the effects of DOX on cauda epididymal sperm. To perform this assay with fluorescent microscope, thick smears were fixed in Carnoy’s fixative (methanol: acetic acid 1: 3) for at least 2 h. The slides were stained for 5 min and gently rinsed with deionized water. Two-hundred sperms from each staining protocol were evaluated and graded as normal DNA (green) or damaged DNA (yellow to red) (28 (link)).
Sample preparation for light microscopy and histopathological analysisAfter fixation of epididymes in a 10% formalin solution, they were directly dehydrated in a graded series of ethanol and embedded in paraffin. Thin sections (4-5 μm) were cut using a microtome and stained with hematoxylin and eosin and examined using a light microscope. The qualitative changes of epididymes were recorded (26 ).
Statistical analysisValues are reported as mean±SEM. Statistical significance between groups was computed by analysis of variance and Tukey multiple comparison post hoc tests. Data was analyzed with SPSS-14 and one way ANOVA test. P<0.05 was considered significant.
Full text: Click here
Publication 2013
To test further the binding site of AOH in HSA, ultrafiltration experiments were carried out with markers of SSI (warfarin), SSII (naproxen), and Heme site (S-camptothecin, CPT). Ultrafiltration studies with warfarin and naproxen were performed as described [50 (link)]. Briefly, Pall Microsep™ Advance centrifugal devices were used with 10 kDa molecular weight cut-off value. Before the ultrafiltration, filter units were rinsed once with 3.0 mL distilled water and twice with 3.0 mL PBS. Samples contained warfarin and HSA (1.0 and 5.0 μM, respectively), naproxen and HSA (1.0 and 1.5 μM, respectively), or CPT and HSA (1.0 and 1.5 μM, respectively) with or without 10 or 20 μM of AOH in PBS. Samples were centrifuged for 10 min at 7500 g and 25 °C (fixed angle rotor). Filtrates were analyzed with HPLC-FLD or HPLC-UV methods (see details in Section 4.4). Warfarin and naproxen were directly analyzed from the filtrates; however, in order to prevent the spontaneous conversion of camptothecin to an open-chain carboxylate form [51 (link)], the following sample preparation was performed. A 500-μL aliquot of filtrates was acidified with 2 μL of 6 M perchloric acid, and after a four-fold dilution with the HPLC mobile phase (see in Section 4.4), camptothecin was analyzed by HPLC.
To validate our new ultrafiltration model which aims to investigate the Heme site, the effects of two known site markers (methyl orange and bilirubin) were tested. Both methyl orange and bilirubin were able to significantly increase the concentration of CPT in the filtrate (Figure S1), suggesting the displacement of CPT from HSA. Furthermore, bilirubin showed much stronger effect than methyl orange, which is in agreement with the significantly higher binding affinity of bilirubin towards HSA (compared to methyl orange and CPT) [26 (link)].
Full text: Click here
Publication 2019
Bilirubin Binding Sites Camptothecin Heme High-Performance Liquid Chromatographies Medical Devices methyl orange Naproxen Perchloric Acid Technique, Dilution Ultrafiltration Warfarin
All flow cytometry experiments were performed on a BD LSR II (BD Biosciences, San Jose, CA, USA). The fluorescent probes were purchased from Invitrogen/Molecular Probes (Eugene, OR, USA) unless otherwise stated. ΔΨm was measured using 10 nM tetramethylrhodamine, methyl ester (TMRM) (catalog No. T668; ex543, em567) and 40 nM 3,3′-dihexyloxacarbocyanine iodide (DiOC6) (catalog No. D273; ex488, em525). Mitochondrial mass was evaluated with 150 nM MitoTracker Green (MTG) (catalog No. M7514; ex490, em516) and 2.5 μM nonylacridine orange (NAO) (catalog No. A1372; ex490, em540). The concentration of NO, a reactive nitrogen species (RNS), was measured by 1 μM 4-amino-5-methylamino-2′,7′-difluorescein (DAF-FM) (catalog No. D23844; ex495, em518). H2O2levels were evaluated using 10 μM 2′,7′-dichlorofluorescin diacetate (DCF-DA) (catalog No. C400; ex495, em529). Dihydrorhodamine 123 (DHR) (catalog No. D23806; ex507 em527) and dihydroethidium (HE) (catalog No. D11347; ex635 em610) were also used. Data were analyzed with FlowJo version 7.5.5 software (Tree Star Inc., Ashland, OR, USA).
Publication 2017
3,3'-dihexaoxycarbocyanine iodide dichlorofluorescin dihydroethidium dihydrorhodamine 123 Esters Flow Cytometry Fluorescent Probes Iodides Mitochondria Molecular Probes N(10)-nonylacridine orange Reactive Nitrogen Species tetramethylrhodamine Trees
General procedure for the synthesis of 1-(2-nitrophenyl)-N-phenylmethanimines (26). 2-Nitrobenzaldehyde (5 g, 33.08 mmol) and aniline or the corresponding substituted aniline (33.08 mmol, 1 eq) were dissolved in ethanol (12–40 mL; the minimum quantity to dissolve the starting materials) and stirred at reflux temperature for 1–4 h to yield compounds 24, 6. Finally, the mixture was cooled to induce crystallization and the solid formed was separated using vacuum filtration and washed with cold ethanol. This same reaction was carried out at room temperature to yield compound 5.
General procedure for the synthesis of 2-phenyl-2H-indazole derivatives (711). 2-Phenyl-2H-indazole derivatives were synthesized employing a slight modification of the Cadogan method [24 (link)]. The corresponding imine 26 (20 mmol) was heated in triethyl phosphite (60 mmol) at 150 °C (0.5–2 h) until the starting material was totally consumed. Then, phosphite and phosphate were separated using vacuum distillation and the residue was purified using column chromatography with hexane–ethyl acetate (90:10) as a mobile phase to give the respective 2-phenyl-2H-indazole derivatives 79 and 11. A slightly more polar mobile phase was used for the purification of the compound 10, hexane-ethyl acetate (80:20).
4-(2H-indazol-2-yl) phenol (12). Compound 9 (4 mmol) was dissolved in dichloromethane (12 mL) and cooled to 0 °C under N2 atmosphere. Then, boron tribromide (12 mL of 1 M solution in dichloromethane, 12 mmol) was added and the reaction mixture was warmed to room temperature and stirred overnight. After completion of the reaction, a saturated sodium bicarbonate solution was added and the solid formed was filtered under vacuum. The crude product was purified using a short column packed with silica gel and ethyl acetate-hexanes (6:4) as a mobile phase to give compound 12.
General procedure for the synthesis of derivatives13, 20, and25. The appropriate methyl ester derivative (10, 18, and 23, 1.2 mmol) was dissolved in methanol (7.5 mL) and an aqueous solution of NaOH (3.6 mmol in 3 mL of water) was added. The reaction mixture was heated under reflux for five hours. After completion of the reaction, the mixture was cooled on ice and acidified to pH 1 with HCl to induce precipitation. The solid was separated using vacuum filtration and dried.
2-(4-(Methylsulfinyl) phenyl)-2H-indazole (14). To a solution of compound 11 (0.8 mmol) in 28 mL of CH3CN/CH3COOH (1:1), NaIO4 (0.8 mmol) dissolved in 2 mL of H2O/AcOH (4:1) was added. The reaction mixture was stirred at room temperature for 24 h. Then, the reaction was neutralized with a saturated solution of sodium bicarbonate and the product was extracted with dichloromethane (3 × 50 mL). The organic phase was dried with anhydrous sodium sulfate and concentrated under vacuum. The evaporation residue was purified by column chromatography using dichloromethane/methanol (98:2) as a mobile phase to give compound 14.
General procedure for the synthesis of derivatives15, 21, and 26. NaIO4 (5 mmol) dissolved in 5 mL of H2O/AcOH (4:1) were added to a solution of the proper indazole derivative 11, 19, or 24 (2 mmol) in 28 mL of CH3CN/CH3COOH (1:1). The reaction mixture was stirred at reflux temperature for 12 h. Then, the mixture was neutralized with a saturated solution of sodium bicarbonate and brine solution was added until complete precipitation. The solid was separated using vacuum filtration and dried. The crude product was purified by column chromatography using dichloromethane as a mobile phase.
General procedure for the synthesis of 2,3-diphenyl-2H-indazole derivatives1619 and 2224. Compounds 1619 and 2224 were synthesized by a palladium catalyzed arylation as previously described by Ohnmacht et al. [27 (link)]. It is worth mentioning that the previously-reported methodology was scaled up to 0.5 g of starting 2-phenyl-2H-indazole. Whereas compounds 1619, 22, and 23, were synthesized using the proper 2-phenyl-2H-indazole and the substituted 4-iodobenzene, only compound 24 was synthesized from 2-phenyl-2H-indazole and 4-bromothioanisole.
1-(2-Nitrophenyl)-N-phenylmethanimine (2). Yellow solid (93% yield); m.p.: 64.1–64.9 °C (lit [24 (link)]: 63–64 °C); 1H-NMR (600 MHz, CDCl3) δ 8.94 (s, 1H), 8.31 (dd, J = 7.8, 1.4 Hz, 1H), 8.07 (dd, J = 8.2, 1.1 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.64–7.60 (m, 1H), 7.45–7.40 (m, 2H), 7.31–7.27 (m, 3H); 13C-NMR (151 MHz, CDCl3) δ 155.84, 151.07, 149.34, 133.58, 131.18, 131.12, 129.75, 129.28, 126.92, 124.54, 121.18.
N-(4-Chlorophenyl)-1-(2-nitrophenyl) methanimine (3). Dark yellow solid (91% yield); m.p.: 91.2–92.2 °C (lit [36 (link)]: 91–92 °C). 1H-NMR (600 MHz, CDCl3) δ 8.93 (s, 1H), 8.29 (dd, J = 7.8, 1.5 Hz, 1H), 8.08 (dd, J = 8.2, 1.2 Hz, 1H), 7.78–7.72 (m, 1H), 7.67–7.61 (m, 1H), 7.41–7.36 (m, 2H), 7.25–7.20 (m, 2H); 13C-NMR (151 MHz, CDCl3) δ 156.24, 149.49, 149.32, 133.64, 132.58, 131.40, 130.87, 129.72, 129.40, 124.61, 122.54.
N-(4-Methoxyphenyl)-1-(2-nitrophenyl) methanimine (4). Yellow solid (92% yield); m.p.: 79.1–79.9 °C (lit [36 (link)]: 81–82 °C); 1H-NMR (600 MHz, CDCl3) δ 8.97 (s, 1H), 8.32 (dd, J = 7.8, 1.4 Hz, 1H), 8.06 (dd, J = 8.2, 1.1 Hz, 1H), 7.75–7.70 (m, 1H), 7.62–7.57 (m, 1H), 7.35–7.29 (m, 2H), 6.98–6.94 (m, 2H), 3.85 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 159.09, 153.31, 143.88, 133.48, 131.36, 130.81, 129.55, 124.53, 122.78, 114.50, 55.53.
Methyl 4-((2-nitrobenzylidene) amino)benzoate (5) Pale yellow solid (73% yield); m.p.: 122.7–124.4 °C; 1H-NMR (600 MHz, CDCl3) δ 8.93 (s, 1H), 8.30 (dd, J = 7.7, 1.0 Hz, 1H), 8.10 (d, J = 8.4 Hz, 3H), 7.76 (t, J = 7.6 Hz, 1H), 7.68–7.63 (m, 1H), 7.30–7.25 (m, 2H), 3.93 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 166.66, 157.50, 155.14, 149.39, 133.71, 131.66, 130.95, 130.70, 129.84, 128.26, 124.65, 120.93, 52.15; MS (HR-ESI) for C15H12N2O4 [M + H]+, calcd: m/z 285.0870, found: m/z 285.0861.
N-(4-(Methylthio)phenyl)-1-(2-nitrophenyl)methanimine (6). Burnt orange solid (92% yield); m.p.: 69.3–70.4 °C; 1H-NMR (600 MHz, CDCl3) δ 8.96 (s, 1H), 8.31 (dd, J = 7.8, 1.4 Hz, 1H), 8.07 (dd, J = 8.2, 1.1 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.63–7.58 (m, 1H), 7.33–7.22 (m, 4H), 2.52 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 154.86, 149.25, 148.06, 137.45, 133.51, 131.07, 129.63, 127.37, 124.53, 121.89, 16.06; MS (HR-ESI) for C14H12N2O2S [M + H]+, calcd: m/z 273.0692, found: m/z 273.0683.
2-Phenyl-2H-indazole (7). White solid (64% yield); m.p.: 81.2–81.6 °C (lit [24 (link)]: 81–82 °C); the spectroscopic data matched previously reported data [37 (link)]: 1H-NMR (600 MHz, CDCl3) δ 8.40 (d, J = 0.9 Hz, 1H), 7.91–7.88 (m, 2H), 7.79 (dd, J = 8.8, 0.9 Hz, 1H), 7.70 (dt, J = 8.5, 1.0 Hz, 1H), 7.54–7.50 (m, 2H), 7.41–7.37 (m, 1H), 7.32 (ddd, J = 8.8, 6.6, 1.0 Hz, 1H), 7.11 (ddd, J = 8.4, 6.6, 0.7 Hz, 1H); 13C-NMR (151 MHz, CDCl3) δ (ppm): 149.78, 140.52, 129.54, 127.88, 126.81, 122.76, 122.44, 120.99, 120.39, 120.37, 117.94.
2-(4-Chlorophenyl)-2H-indazole (8). White solid (57% yield); m.p.: 143.0–145.5 °C (lit [38 (link)]: 138–140 °C); the spectroscopic data matched previously reported data [38 (link)]: 1H-NMR (600 MHz, CDCl3) δ 8.37 (d, J = 1.0 Hz, 1H), 7.87–7.82 (m, 2H), 7.77 (dq, J = 8.8, 0.9 Hz, 1H), 7.69 (dt, J = 8.5, 1.0 Hz, 1H), 7.51–7.47 (m, 2H), 7.33 (ddd, J = 8.8, 6.6, 1.1 Hz, 1H), 7.12 (ddd, J = 8.5, 6.6, 0.8 Hz, 1H); 13C-NMR (151 MHz, CDCl3) δ 149.89, 139.02, 133.55, 129.67, 127.09, 122.87, 122.71, 122.00, 120.29, 117.90.
2-(4-Methoxyphenyl)-2H-indazole (9). Beige solid (56 % yield); m.p.: 133.2–135.8 °C (lit [39 ]: 130–131 °C); the spectroscopic data matched previously reported data [40 (link)]: 1H-NMR (600 MHz, CDCl3) δ 8.30 (d, J = 0.9 Hz, 1H), 7.82–7.76 (m, 3H), 7.69 (dt, J = 8.4, 1.0 Hz, 1H), 7.31 (ddd, J = 8.7, 6.6, 1.0 Hz, 1H), 7.10 (ddd, J = 8.4, 6.6, 0.8 Hz, 1H), 7.05–6.99 (m, 2H), 3.86 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 159.28, 149.58, 134.12, 126.53, 122.70, 122.41, 122.22, 120.30, 120.25, 117.77, 114.63, 55.60.
Methyl 4-(2H-indazol-2-yl) benzoate (10). White solid (52% yield); m.p.: 185.8–186.2 °C (lit [41 ]: 186–187 °C); the spectroscopic data matched previously reported data [40 (link)]: 1H-NMR (600 MHz, CDCl3) δ 8.47 (d, J = 0.7 Hz, 1H), 8.22–8.18 (m, 2H), 8.02–7.99 (m, 2H), 7.77 (dd, J = 8.8, 0.8 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.33 (ddd, J = 8.8, 6.6, 1.0 Hz, 1H), 7.14–7.10 (m, 1H), 3.95 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 166.19, 150.19, 143.64, 131.16, 129.27, 127.45, 123.01, 122.98, 120.47, 120.26, 118.06, 52.33.
2-(4-(Methylthio) phenyl)-2H-indazole (11). Pale yellow solid (61% yield); m.p.: 148.3–149.7 °C (lit [38 (link)]: 137–139 °C); the spectroscopic data matched previously reported data [38 (link)]: 1H-NMR (600 MHz, CDCl3) δ 8.35 (d, J = 0.8 Hz, 1H), 7.84–7.80 (m, 2H), 7.79–7.76 (m, 1H), 7.68 (dt, J = 8.5, 0.9 Hz, 1H), 7.39–7.35 (m, 2H), 7.31 (ddd, J = 8.7, 6.6, 1.0 Hz, 1H), 7.10 (ddd, J = 8.4, 6.6, 0.8 Hz, 1H), 2.53 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 149.72, 138.63, 137.78, 127.27, 126.82, 122.77, 122.46, 121.26, 120.30, 120.12, 117.84, 15.88.
4-(2H-Indazol-2-yl) phenol (12). Beige solid (64% yield); m.p.: 179–181 °C (lit [25 (link)]: 193–194 °C); the spectroscopic data matched previously reported data [42 ]: 1H-NMR (600 MHz, DMSO-d6) δ 9.85 (s, 1H), 8.91 (d, J = 0.9 Hz, 1H), 7.91–7.84 (m, 2H), 7.75 (dt, J = 8.4, 1.0 Hz, 1H), 7.69 (dq, J = 8.8, 0.9 Hz, 1H), 7.29 (ddd, J = 8.7, 6.6, 1.1 Hz, 1H), 7.08 (ddd, J = 8.3, 6.6, 0.8 Hz, 1H), 6.98–6.92 (m, 2H); 13C-NMR (151 MHz, DMSO-d6) δ 157.09, 148.47, 132.11, 126.10, 122.24, 121.75, 121.57, 120.78, 120.58, 117.12, 115.81.
4-(2H-Indazol-2-yl) benzoic acid (13). White solid (96% yield); m.p.: 288.3–288.5 °C (lit [41 ]: 286–288 °C); 1H-NMR (600 MHz, DMSO-d6) δ 9.23 (s, 1H), 8.29–8.23 (m, 2H), 8.18–8.12 (m, 2H), 7.79 (dt, J = 8.5, 1.0 Hz, 1H), 7.73 (dq, J = 8.8, 0.9 Hz, 2H), 7.35 (ddd, J = 8.8, 6.5, 1.1 Hz, 1H), 7.13 (ddd, J = 8.5, 6.6, 0.8 Hz, 1H); 13C-NMR (151 MHz, DMSO-d6) δ 166.46, 149.22, 142.83, 130.82, 129.65, 127.28, 122.54, 122.43, 122.04, 120.99, 119.86, 117.48.
2-(4-(Methylsulfinyl) phenyl)-2H-indazole (14). White solid (92% yield); m.p.: 150.1–152.7 °C; 1H-NMR (600 MHz, CDCl3) δ 8.47 (d, J = 0.9 Hz, 1H), 8.13–8.07 (m, 2H), 7.83–7.75 (m, 3H), 7.70 (dt, J = 8.5, 1.0 Hz, 1H), 7.34 (ddd, J = 8.8, 6.6, 1.1 Hz, 1H), 7.13 (ddd, J = 8.5, 6.6, 0.8 Hz, 1H), 2.78 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 150.14, 145.05, 142.47, 127.45, 125.03, 123.01, 121.49, 120.46, 120.43, 118.01, 44.10; MS (HR-ESI) for C14H12N2OS [M + Na]+, calcd: m/z 279.0562, found: m/z 279.0481.
2-(4-(Methylsulfonyl) phenyl)-2H-indazole (15). White solid (68% yield); m.p.: 200.6–201.5 °C; 1H-NMR (600 MHz, CDCl3) δ 8.50 (d, J = 0.8 Hz, 1H), 8.19–8.05 (m, 4H), 7.76 (m, 1H), 7.70 (m, 1H), 7.35 (ddd, J = 8.8, 6.6, 1.0 Hz, 1H), 7.14 (ddd, J = 8.5, 6.6, 0.7 Hz, 1H), 3.11 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 150.43, 144.23, 139.27, 129.18, 127.87, 123.36, 123.18, 120.99, 120.57, 120.54, 118.11, 44.62; MS (HR-ESI) for C14H12N2O2S [M + H]+, calcd: m/z 273.0692, found: m/z 273.0659.
2,3-Diphenyl-2H-indazole (16). White solid (77% yield); mp: 107.4–107.9 °C (lit [27 (link)]: 102–103 °C); 1H-NMR (600 MHz, CDCl3) δ 7.82–7.79 (m, 1H), 7.73–7.70 (m, 1H), 7.45–7.42 (m, 2H), 7.41–7.34 (m, 9H), 7.14 (ddd, J = 8.4, 6.6, 0.8 Hz, 1H); 13C-NMR (151 MHz, CDCl3) δ 148.99, 140.24, 135.41, 129.91, 129.69, 128.97, 128.76, 128.30, 128.25, 126.98, 126.02, 122.50, 121.74, 120.52, 117.76.
2-(4-Chlorophenyl)-3-phenyl-2H-indazole (17). White solid (45% yield); m.p.: 124.4–125.0 °C (lit [43 (link)]: 126 °C); 1H-NMR (600 MHz, CDCl3) δ 7.78 (dt, J = 8.8, 0.9 Hz, 1H), 7.68–7.69 (dt, J = 8.5, 0.9 Hz, 1H), 7.45–7.32 (m, 10H), 7.14 (ddd, J = 8.4, 6.6, 0.8 Hz, 1H); 13C-NMR (151 MHz, CDCl3) δ 149.12, 138.75, 135.47, 134.09, 129.67, 129.63, 129.18, 128.94, 128.55, 127.26, 127.10, 122.73, 121.86, 120.49, 117.72; MS (HR-ESI) for C19H13ClN2 [M + H]+, calcd: m/z 305.0840, found: m/z 305.0736.
Methyl 4-(3-phenyl-2H-indazol-2-yl) benzoate (18). Pale yellow solid (40% yield); m.p.: 152.4–154.9 °C; 1H-NMR (600 MHz, CDCl3) δ 8.07–8.04 (m, 2H), 7.80 (dt, J = 8.8, 0.8 Hz, 1H), 7.69 (dt, J = 8.6, 1.0 Hz, 1H), 7.55–7.52 (m, 2H), 7.44–7.34 (m, 6H), 7.15 (ddd, J = 8.5, 6.6, 0.8 Hz, 1H), 3.93 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 166.21, 149.34, 143.76, 135.69, 130.42, 129.70, 129.62, 128.98, 128.66, 127.46, 125.69, 122.89, 122.08, 120.53, 117.81, 52.33; MS (HR-ESI) for C21H16N2O2 [M + H]+, calcd: m/z 329.1285, found: m/z 329.1103.
2-(4-(Methylthio) phenyl)-3-phenyl-2H-indazole (19). Pale yellow solid (71% yield) m.p.: 87.7–89.0 °C; 1H-NMR (600 MHz, CDCl3) δ 7.79 (dt, J = 8.9, 1.0 Hz, 1H), 7.70 (dt, J = 8.6, 1.0 Hz, 1H), 7.43–7.34 (m, 8H), 7.24–7.21 (m, 2H), 7.13 (ddd, J = 8.4, 6.6, 0.8 Hz, 1H), 2.49 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 148.97, 139.16, 137.23, 135.26, 129.88, 129.68, 128.83, 128.35, 127.00, 126.40, 126.19, 122.50, 121.78, 120.46, 117.68, 15.58; MS (HR-ESI) for C20H16N2S [M + H]+, calcd: m/z 317.1107, found: m/z 317.1108.
4-(3-Phenyl-2H-indazol-2-yl) benzoic acid (20). White solid (70% yield); m.p.: 129.2–130.1 °C; 1H-NMR (600 MHz, DMSO-d6) δ 8.04–7.99 (m, 2H), 7.77 (d, J = 8.8 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.59–7.55 (m, 2H), 7.51–7.37 (m, 6H), 7.18 (dd, J = 8.4, 6.6 Hz, 1H); 13C-NMR (151 MHz, DMSO-d6) δ 166.41, 148.44, 143.00, 135.18, 130.45, 130.07, 129.44, 128.95, 128.87, 128.63, 127.18, 125.91, 122.73, 121.30, 120.32, 117.41; MS (HR-ESI) for C20H14N2O2 [M + H]+, calcd: m/z 315.1128, found: m/z 315.1142.
2-(4-(Methylsulfonyl) phenyl)-3-phenyl-2H-indazole (21). Pale yellow solid (77% yield), m.p.: 101.8–102.7 °C; 1H-NMR (600 MHz, CDCl3) δ 7.98–7.94 (m, 2H), 7.78 (dt, J = 8.9, 0.8 Hz, 1H), 7.70–7.66 (m, 3H), 7.48–7.42 (m, 3H), 7.39 (ddd, J = 8.8, 6.5, 1.0 Hz, 1H), 7.38–7.35 (m, 2H), 7.16 (ddd, J = 8.4, 6.5, 0.7 Hz, 1H), 3.08 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 149.58, 144.52, 139.70, 135.94, 129.70, 129.28, 129.23, 129.00, 128.41, 127.85, 126.45, 123.23, 122.29, 120.58, 117.81, 44.52; MS (HR-ESI) for C20H16N2O2S [M + H]+, calcd: m/z 349.1005, found: m/z 349.1005.
3-(4-Chlorophenyl)-2-phenyl-2H-indazole (22). White solid (67% yield); m.p.: 141.1–142.8 °C (lit [27 (link)]: 134–135 °C); the spectroscopic data matched previously reported data [27 (link),44 (link)]: 1H-NMR (600 MHz, CDCl3) δ 7.80 (dt, J = 8.8, 0.8 Hz, 1H), 7.67 (dt, J = 8.6, 1.0 Hz, 1H), 7.44–7.35 (m, 8H), 7.30–7.27 (m, 2H), 7.16 (ddd, J = 8.4, 6.5, 0.7 Hz, 1H); 13C-NMR (151 MHz, CDCl3) δ 149.00, 139.98, 134.45, 134.08, 130.84, 129.14, 129.12, 128.48, 128.38, 127.08, 126.01, 122.86, 121.71, 120.11, 117.91.
Methyl 4-(2-phenyl-2H-indazol-3-yl) benzoate (23). Pale yellow solid (76% yield): m.p.: 164.5–166.3 °C; the spectroscopic data matched previously reported data [45 (link)]: 1H-NMR (600 MHz, CDCl3) δ 8.08–8.04 (m, 2H), 7.84–7.80 (m, 1H), 7.72 (dt, J = 8.5, 0.9 Hz, 1H), 7.45–7.37 (m, 8H), 7.19 (ddd, J = 8.5, 6.5, 0.6 Hz, 1H), 3.93 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 166.55, 149.08, 139.99, 134.37, 134.13, 129.97, 129.66, 129.49, 129.18, 128.59, 127.14, 126.04, 123.18, 121.90, 120.09, 118.02, 52.29.
3-(4-(Methylthio) phenyl)-2-phenyl-2H-indazole (24). White solid, (36% yield); m.p.: 119.3–121.4 °C; the spectroscopic data matched previously reported data [45 (link)]: 1H-NMR (600 MHz, CDCl3) δ 7.79 (dt, J = 8.8, 0.9 Hz, 1H), 7.70 (dt, J = 8.5, 1.0 Hz, 1H), 7.46–7.43 (m, 2H), 7.42–7.34 (m, 4H), 7.29–7.23 (m, 4H), 7.14 (ddd, J = 8.5, 6.6, 0.8 Hz, 1H), 2.50 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 149.01, 140.22, 139.32, 134.94, 129.90, 129.06, 128.29, 126.99, 126.27, 126.16, 126.02, 122.50, 121.66, 120.43, 117.80, 15.26.
4-(2-Phenyl-2H-indazol-3-yl) benzoic acid (25). White solid (87% yield); mp: 296.2–298.2 °C; 1H-NMR (600 MHz, DMSO-d6) δ 7.94–7.90 (m, 2H), 7.75 (d, J = 8.7 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.49–7.42 (m, 5H), 7.38 (ddd, J = 8.7, 6.6, 0.9 Hz, 1H), 7.30–7.26 (m, 2H), 7.16 (ddd, J = 8.4, 6.6, 0.6 Hz, 1H); 13C-NMR (151 MHz, DMSO-d6) δ 169.13, 148.11, 140.15, 139.79, 135.10, 129.32, 129.17, 128.98, 128.37, 128.26, 126.77, 125.88, 122.34, 121.02, 120.38, 117.29; MS (HR-ESI) for C20H14N2O2 [M + H]+, calcd: m/z 315.1128, found: m/z 315.1139.
3-(4-(Methylsulfonyl) phenyl)-2-phenyl-2H-indazole (26). Pale yellow solid (60% yield), mp: 206.9–208.8 °C; 1H-NMR (600 MHz, CDCl3) δ 7.98–7.94 (m, 2H), 7.84 (dt, J = 8.7, 0.9 Hz, 1H), 7.71 (dt, J = 8.5, 1.0 Hz, 1H), 7.57–7.54 (m, 2H), 7.45–7.39 (m, 6H), 7.22 (ddd, J = 8.5, 6.6, 0.9 Hz, 1H), 3.11 (s, 3H); 13C-NMR (151 MHz, CDCl3) δ 149.10, 139.83, 139.71, 135.46, 132.95, 130.24, 129.40, 128.90, 127.86, 127.27, 126.06, 123.70, 122.03, 119.64, 118.22, 44.42; MS (HR-ESI) for C20H16N2O2S [M + H]+, calcd: m/z 349.1005, found: m/z 349.1005.
Full text: Click here
Publication 2017

Most recents protocols related to «Methyl orange»

In the methyl orange degradation experiments, methyl orange solution was introduced to the anode electrolyte. After a stable operation period of 400 h, various concentrations of methyl orange solution (50, 100, 200 mg L−1) were incorporated into the anode solution, operating under different pH conditions (5, 7, 9). Subsequently, the spectrophotometer measured the methyl orange concentration in the anode solution at 465 nm.32 (link) Upon completion of the operation, the anode biofilm was collected and sent to Yanqu Information Technology Co., Ltd (Hangzhou, China). The 16S V3–V4 region was amplified through polymerase chain reaction (PCR) to establish the biofilm library, which underwent high-throughput sequencing. Furthermore, QIIME was employed for data analysis, and statistical tests and data visualization were conducted using the R language. Lastly, the amount of flora on 0.5 cm × 1 cm anode was assessed using the bicinchoninic acid (BCA) protein assay.
Publication 2024
A 50-ppm aqueous solution of MO dye was prepared by adding 50 mg of MO dye powder granules into the 1,000 mL ddw. The aqueous solution was kept on a magnetic stirrer with vigorous stirring at 250 rpm to dissolve the dye granules completely. Further, Whatman filter paper was used for the filtration of the aqueous solution to eliminate the impurities. Finally, the dye sample was placed in an amber-colored glass reagent bottle for future use.
Full text: Click here
Publication 2024
Three kinds of OMts were applied to absorb methyl orange. All experiments were conducted in triplicate to reduce the experimental error. Referring to references 1, 27 and 28, different parameters such as the amount of surfactant, OMt dosage, adsorption temperature and time, and solution pH were investigated in detail.
To determine the surfactant modifier dosages, 0.04 g OMt modified with different doses of surfactants was dispersed into 100 mL of methyl orange solution with an initial concentration of 100 mg/L and then sealed. Each dispersion was first shacked for 6 h at 25℃, and then filtered through a membrane filter (0.45 μm) . Finally, the concentration of the residual methyl orange was analyzed on the UV-vis near-infrared spectrometer (UV-3600, SHI-MADZU, Japan) at 465 nm (pH=3-12) and 504 nm (pH= 2) . The adsorption capacity of OMt for methyl orange, q e (mg/g) , was calculated by the following equation:
where C o (mg/L) and C e (mg/L) were the initial and equilibrium concentrations of methyl orange, respectively, V (L) represented the volume of solution and m (g) was the weight of OMt.
To determine the adsorbent addition, 0.04 g, 0.06 g, 0.08 g, 0.10 g and 0.12 g OMt modified at 2.0 CEC was added into methyl orange solution and oscillated for 6 h at 25℃, respectively. To investigate the effects of the aqueous phase pH, the experiment was performed within the range of pH 2-12, which was adjusted by 0.1 mol/L HCl or NaOH solution. Meanwhile, to investigate the effect of pH, the point of zero charge (pHpzc) of OMts was determined. Firstly, 0.01 M NaCl solutions were prepared and their pH was adjusted to 2-11 by using 0.1 M HCl or 0.1 M NaOH solution. Then, 0.15 g OMt was added to these solutions and agitated for 48 h, and the final pH value of the solution was measured 1) . To study adsorption kinetics, 0.04 g OMt modi-
Fig. 1 The structure of Gemini quaternary ammonium surfactants.
fied at 2.0 CEC was added into methyl orange solution and oscillated for 7 h at 25℃, 35℃ and 45℃, respectively. At 5 min, 10 min, 20 min, 30 min, 40 min, 60 min, 90 min, 120 min, 180 min, 4 h, 6 h and 7 h, an aliquot of the reaction solution was quickly sampled and detected. For all the above experiments, the amount of methyl orange solution was100 mL, with an initial concentration of 100 mg/L.
Publication 2024
All chemicals used in this study were of analytical grade. Phosphoric acid (H3PO4, ≥ 85 wt.% in H2O), sodium hydroxide (NaOH, ≥ 98%, pellets anhydrous), hydrocholoric acid (HCl, 37%), zinc acetate dihydrate (Zn(CH3COO)2·2H2O, ≥ 98%), ammonia solution (NH3.OH, anhydrous ≥ 99.98%), ethanol, absolute alcohol (C2H5.OH, ≥ 95%), methyl red (C15H15N3O2), and methyl orange (C14H14N3O3SNa) with the highest purity from Merck, Darmstadt, Germany. All used reagents were of analytical purity and used as received.
Full text: Click here
Publication 2024
Klebsiella pneumoniae (PME2), K. pneumoniae (MBC34), Micrococcus luteus (MBC23), Micrococcus luteus (MBC57), Enterobacter aerogenes (MBX6), Bacillus subtilis (MBC3), Bacillus cereus (MBC4), Bacillus megaterium (MBP11), Enterococcus faecalis (MBP13), and Serratia marcescens (MBC27) were obtained as gift samples from the Gujarat Biotech Research Centre (Gandhinagar, Gujarat, India). The materials used in the study included silver nitrate (SRL, Gujarat, India), nutrient agar media, nutrient broth and antibiotic assay media (Himedia, Mumbai, India); ethanol (SLC Chemicals, Delhi, India), Whatman filter paper no. 42. (Axiva, Mumbai, India); and methyl orange (MO) (Loba, Chemie, Gujarat, India) and double distilled water (ddw). All the chemicals were analytical grade except silver nitrate and methyl orange dye (LR grade).
Full text: Click here
Publication 2024

Top products related to «Methyl orange»

Sourced in United States, Germany, India, United Kingdom
Methyl orange is a laboratory chemical used as an acid-base indicator. It changes color from red (acidic) to yellow (basic) around pH 3.1 to 4.4, indicating the pH of a solution.
Sourced in United States, Germany, United Kingdom, India, Italy, China, Spain, Australia, France, Sao Tome and Principe, Japan, Canada, Switzerland, Malaysia, Israel, Belgium, Macao
Methylene blue is a chemical compound used as a laboratory reagent. It is a blue crystalline solid that is soluble in water and other polar solvents. Methylene blue is commonly used as an indicator in various chemical and biological assays, as well as a staining agent in microscopy.
Sourced in Germany, United States, India, United Kingdom, Italy, China, Spain, France, Australia, Canada, Poland, Switzerland, Singapore, Belgium, Sao Tome and Principe, Ireland, Sweden, Brazil, Israel, Mexico, Macao, Chile, Japan, Hungary, Malaysia, Denmark, Portugal, Indonesia, Netherlands, Czechia, Finland, Austria, Romania, Pakistan, Cameroon, Egypt, Greece, Bulgaria, Norway, Colombia, New Zealand, Lithuania
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, odorless, crystalline solid that is highly soluble in water and is a strong base. It is commonly used in various laboratory applications as a reagent.
Sourced in Germany, United States, United Kingdom, India, Italy, France, Spain, Australia, China, Poland, Switzerland, Canada, Ireland, Japan, Singapore, Sao Tome and Principe, Malaysia, Brazil, Hungary, Chile, Belgium, Denmark, Macao, Mexico, Sweden, Indonesia, Romania, Czechia, Egypt, Austria, Portugal, Netherlands, Greece, Panama, Kenya, Finland, Israel, Hong Kong, New Zealand, Norway
Hydrochloric acid is a commonly used laboratory reagent. It is a clear, colorless, and highly corrosive liquid with a pungent odor. Hydrochloric acid is an aqueous solution of hydrogen chloride gas.
Sourced in China
Methyl orange is a chemical compound commonly used as a pH indicator in laboratory settings. It can be used to determine the acidity or basicity of a solution by undergoing color changes at different pH levels. This product is a versatile tool for various analytical and experimental applications within scientific research and testing environments.
Sourced in United States, Germany, United Kingdom, Spain, India, China, Singapore, Canada, Sao Tome and Principe, Italy, Australia, Netherlands, Brazil, France, Poland, Belgium
Rhodamine B is a fluorescent dye commonly used in various laboratory applications. It is a synthetic organic compound that exhibits strong absorption and emission properties, making it a useful tool in various analytical and research techniques. Rhodamine B is known for its bright reddish-pink color and its ability to fluoresce when exposed to specific wavelengths of light.
Sourced in Germany, United States, United Kingdom, Italy, India, France, China, Australia, Spain, Canada, Switzerland, Japan, Brazil, Poland, Sao Tome and Principe, Singapore, Chile, Malaysia, Belgium, Macao, Mexico, Ireland, Sweden, Indonesia, Pakistan, Romania, Czechia, Denmark, Hungary, Egypt, Israel, Portugal, Taiwan, Province of China, Austria, Thailand
Ethanol is a clear, colorless liquid chemical compound commonly used in laboratory settings. It is a key component in various scientific applications, serving as a solvent, disinfectant, and fuel source. Ethanol has a molecular formula of C2H6O and a range of industrial and research uses.
Sourced in United States, Germany, United Kingdom, India, Italy, China, Japan, Switzerland, France, Angola, Israel, Macao
Acridine orange is a fluorescent dye used in various laboratory applications. It is a metachromatic dye that can detect and differentiate between DNA and RNA within cells. Acridine orange is commonly used in microscopy techniques, cell biology studies, and nucleic acid staining.
Sourced in China, United States, Argentina
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, crystalline solid that is highly soluble in water. Sodium hydroxide has a wide range of applications in various industries, including as a pH regulator, cleaning agent, and chemical intermediate.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.

More about "Methyl orange"

Methyl orange is a widely used organic dye with diverse applications in research and industry.
This anionic azo dye appears as an orange-red crystalline powder that is soluble in water.
A key property of methyl orange is its ability to change color from red in acidic solutions to yellow in basic environments, making it a valuable pH indicator.
Researchers commonly employ methyl orange in analytical chemistry, spectroscopic analysis, and various titration procedures.
The dye's unique chemical characteristics and color-shifting behavior make it a versatile tool for studying pH-dependent processes, colorimetric assays, and other applications requiring sensitive dye-based detection.
Scientists can leverage the advanced protocol comparison capabilities of PubCompare.ai to streamline their methyl orange-related studies and improve the reproducibility of their findings.
In addition to methyl orange, other related dyes like methylene blue, rhodamine B, and acridine orange are also frequently used in research and analysis.
Factors such as solubility, pH-dependence, and spectral properties can influence the selection of the appropriate dye for a particular application.
Optimizing the use of methyl orange and other dyes can be facilitated by tools like PubCompare.ai, which can help researchers identify the best protocols and experimental conditions to achieve reliable and reproducible results.