The largest database of trusted experimental protocols

Petroleum

Petroleum is a complex mixture of hydrocarbons found in natural underground reservoirs.
It is a primary source of energy and raw material for a wide range of industries, including transportation, manufacturing, and petrochemicals.
Petroleum can be refined into various products such as gasoline, diesel fuel, lubricants, and asphalt.
It is an important global commodity, with its production, distribution, and consumption having significant economic and political implications.
Reserach in the field of petroleum science aims to enhance the efficiency, sustainability, and environmental impact of petroleum exploration, extraction, refining, and utilization.
Key areas of study include geology, engineering, chemistry, and economics related to this vital natural resource.
Petrolemu research is critical for meeting the world's growing energy demands while addressing concerns about climate change and environmental protection.

Most cited protocols related to «Petroleum»

The GuLF STUDY (Gulf Long-term Follow-up Study) is a prospective cohort study designed to examine human health effects among the DWH OSRC workers. It targeted these workers because they were likely to have the greatest potential for direct physical contact with the crude oil, dispersants, and oil combustion products. Outcomes of interest were derived from the literature on health effects of oil spills, studies of petroleum-exposed workers, NIOSH (National Institute for Occupational Safety and Health) surveillance reports during the spill, and media and community reports of symptoms among oil spill workers and residents of nearby communities.
The study protocol was reviewed by the Institute of Medicine in September 2010 (Institute of Medicine 2010 ) and was approved by the Institutional Review Board of the NIEHS. The study is overseen by a Scientific Advisory Board and a Community Advisory Board.
Full text: Click here
Publication 2017
Ethics Committees, Research Homo sapiens Osteosarcoma Petroleum Petroleum Pollution Physical Examination Workers
Immediately after isolation, the OBs were suspended in ethanol (8:1 v/v) and the internal phosphorus standard added (lyso-phosphatidylglycerol, known mass of 2.5–4.5 mg). The solvents were then removed under reduced pressure (2 × 200 mL ethanol) and the remaining material washed with petroleum spirit (3 × 300 mL, 50 mmHg, glass sinter). The combined solutions were concentrated in vacuo to give the triglyceride (oil) fraction. The retentate was suspended (chloroform/ethanol/triethylamine, 3:1:1 [CET], 300 mL), sonicated (Ultrasonicator USC1700D, VWR (Lutterworth, Leicestershire, UK), power 9, 25 °C, 15 min), and washed (CET, 2 × 100 mL, 50 mmHg, glass sinter). The retentate was washed lightly with chloroform. The combined CET solutions and chloroform wash were concentrated in vacuo to give the lipid fraction. The remaining solid was dried in vacuo to give what is referred to as the protein fraction. The mass of protein was measured using the Bradford Assay. Details of spectral techniques and protein analysis can be found in the Electronic Supplementary Material.
Publication 2013
Biological Assay Chloroform Ethanol isolation Lipids Petroleum Phosphatidylglycerols Phosphorus Pressure Proteins Proto-Oncogene Mas Solvents triethylamine Triglycerides
The inventory was developed using a top-down approach based on the PKU-FUEL-200718 and an updated EFPAHs database. Among the 64 fuel sub-types defined in the PKU-FUEL-2007,18 the category of crude oil (used in petroleum refinery) was replaced with catalytic cracking. In addition, five process emission sources in the iron-steel industry (iron sintering, open hearth furnace, convertor, arc furnace, and hot rolling) were added,23 increasing the total fuel sub-types to 69 (Table S1). They were divided into six categories (coal, petroleum, natural gas, solid wastes, biomass, and an industrial process category) or six sectors (energy production, industry, transportation, commercial/residential sources, agriculture, and deforestation/wildfire). PKU-PAH-2007 covered 222 countries/territories and was gridded to 0.1°× 0.1° resolution for the year 2007. In addition, annual PAH emissions from individual countries were derived from 1960 to 2008 and simulated from 2009 to 2030 based on the six IPCC SRES scenarios.24 The 16 PAHs included in the inventory were: naphthalene (NAP), acenaphthylene (ACY), acenaphthene (ACE), fluorene (FLO), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLA), pyrene (PYR), benz(a)anthracene (BaA), chrysene (CHR), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), dibenz(a,h)anthracene (DahA), indeno(l,2,3-cd)pyrene (IcdP), and benzo(g,h,i)perylene (BghiP). In this study, the term “total PAHs” means the sum of the 16 PAHs.
Publication 2013
acenaphthene acenaphthylene anthracene Benzo(a)pyrene benzo(b)fluoranthene benzo(k)fluoranthene Catalysis chrysene Coal Deforestation fluoranthene fluorene Iron naphthalene Perylene Petroleum phenanthrene Polycyclic Hydrocarbons, Aromatic pyrene Steel Wildfires
Blood samples were collected from the antecubital vein of all participants in the morning under fasting conditions. They were stored in vacuum tubes containing EDTA (ethylene diamine tetraacetic acid) and coagulation tubes. A range of haematological and biochemistry tests (Table 2) were conducted on fresh samples at the central laboratory of the Staff Hospital of Jidong oil-field of Chinese National Petroleum. Fasting blood glucose was measured with the hexokinase/glucose-6-phosphate dehydrogenase method. Cholesterol and triglyceride concentrations were determined by enzymatic methods (Mind Bioengineering Co. Ltd, Shanghai, China). Blood samples were also measured using an auto-analyzer (Hitachi 747; Hitachi, Tokyo, Japan) at the central laboratory of the Staff Hospital of Jidong oil-field of Chinese National Petroleum. For all participants, serum creatinine, cholesterol, high-density lipoproteins (HDL-C), low-density lipoproteins (LDL-C), triglycerides and glucose levels were assessed. In subgroup analysis studies, various biomarkers of blood cells, serum and plasma were measured: C-reactive protein, homocysteine, estrogens, androgens, vitamin D, lipoprotein-associated phospholipase A2 (Lp-PLA2), insulin, and glycosylated hemoglobin HbA1c.

Haematology, biochemistry and biological specimen banking in the COACS

Analysate
Red blood cellsHaemoglobin
Red corpuscle count
Haematocrit
Mean corpuscular volume
Mean corpuscular
Haemoglobin concentration
Red blood cell distribution width
White blood cellsWhite cell count Total count
Differential count
PlateletsPlatelets Count
Mean platelet volume
UreaUrine specific gravity
Ery
Urea nitrogen
Uric acid (UA)
Creatinine (Cr)
Urine protein
Liver function tests (plasma)Alkaline phosphatise
Alanine transaminase (ALT)
Aspartate aminotransferase (AST)
Phosphatise Transglutaminase (TG)
Liver function tests (serum)HBsAg
Anti-HBs
HBeAg
Anti-HBe
Anti-HBc
Lipids (plasma)Total cholesterol (TC)
Total bilirubin (TBIL)
Triglycerides (TG)
Low density lipoprotein (LDL)
Very Low density lipoprotein (VLDL)
General chemistry (plasma)C-reactive protein
Homocysteine
Steroids
Glucose
Insulin
Glycosylated hemoglobin
Bio-specimen banking
 White blood cellsDNA, RNA extraction and analyses
 SerumPedtidome profiling
 PlasmaGlycome
Blood samples were processed and separated onsite for biospecimen banking (−80 °C). DNA and RNA were extracted and stored in the laboratory of Beijing Key Laboratory of Clinical Epidemiology, Beijing, China.
Full text: Click here
Publication 2016
Acids Androgens Bilirubin Biological Markers BLOOD Blood Cell Count Blood Cells Blood Glucose Blood Platelets Chinese Cholesterol Clinical Laboratory Services Coagulation, Blood C Reactive Protein Creatinine Edetic Acid Enzymes Ergocalciferol Estrogens Glucose Glucosephosphate Dehydrogenase Hemoglobin, Glycosylated Hexokinase High Density Lipoproteins Homocysteine Insulin Liver Function Tests Low-Density Lipoproteins Oil Fields PAF 2-Acylhydrolase Personnel, Hospital Petroleum Plasma Serum Transaminase, Serum Glutamic-Oxaloacetic Transaminases Transglutaminases Triglycerides Urinalysis Vacuum Vaginal Diaphragm Veins Very Low Density Lipoprotein
The trial includes a control arm and two intervention arms: an efficient biomass cookstove arm and a LPG arm. Fig. 1 depicts the intervention cookstoves, and Fig. 2 provides an overview of study procedures by arm.

BioLite (left) and liquified petroleum gas (LPG) (right) cookstoves

Flow chart

In the efficient biomass cookstove arm – hereafter called the “BioLite arm” – households receive two BioLite HomeStove cookstoves (BioLite Inc., Brooklyn, NY, USA). These stoves burn freely available biomass fuels, but do so in a constrained L-shaped combustion chamber that increases heat transfer efficiency relative to traditional three-stone fires (more energy to the pot per unit of wood). In addition, a fan blows air into the combustion chamber, which improves the combustion efficiency of the system. A thermoelectric generator powers the fan, enabling use without a connection to an electrical grid. While some versions of the BioLite provide power via a Universal S Bus (USB) port, we opted for a version that optimizes combustion efficiency at the expense of USB power.
Study participants in the LPG arm receive a two-burner LPG stove manufactured in Ghana by the Ghana Cylinder Manufacturing Co. (Accra, Ghana). We chose that particular stove because it is readily available in Ghana, both for the current study and for potential future distribution. Enrolled households also receive timely deliveries of LPG gas at no cost to the participants. GRAPHS leased a 5000-kg LPG tank to ensure continuous supply. If households run low on LPG prior to a scheduled delivery, they can contact their fieldworker and the study will make a special delivery. Control arm participants use their own three-stone traditional stoves for the duration of the trial and will receive one BioLite stove at the end of the study period. All participants receive an insecticide-treated net (ITN).
Community-based fieldworkers visit households every week to check up on the intervention stoves and address any problems. In the control areas the community-based fieldworker visits take place as in the intervention arms, and are framed as checkups on the ITNs.
Full text: Click here
Publication 2015
Arm, Upper Biolite Calculi Cocaine Electricity Fires Households Insecticides Obstetric Delivery Petroleum

Most recents protocols related to «Petroleum»

Example 122

[Figure (not displayed)]

To a stirred solution of crude 325 in MeCN (100 mL) under nitrogen at rt, was added dropwise a solution of 2,6-dimethylphenol (1.22 g, 10.0 mmol), triethylamine (4.18 mL, 30.0 mmol), and DABCO (0.112 g, 1.00 mmol) in MeCN over 30 min. The mixture immediately turned deep red at the beginning of addition, and was stirred an additional 90 min after addition was completed. The reaction mixture was concentrated by rotary evaporation, and the residue was redissolved in CHCl3 (300 mL). The solution was washed sequentially with sat. aq. NaHCO3 (1×300 mL) and brine (2×300 mL), dried over Na2SO4, filtered, and concentrated by rotary evaporation to give a crude red oil. Flash chromatography on the Combiflash (330 g column, 5 to 20% EtOAc in hexanes gradient), gave 326 (5.02 g, 85% yield over 2 steps) as an off-white solid foam.

1H NMR (400 MHz, CDCl3) δ 8.20 (d, J=7.4 Hz, 1H), 7.06 (s, 3H), 6.08 (d, J=7.4 Hz, 1H), 5.94 (d, J=15.9 Hz, 1H), 5.02 (dd, J=52.1 Hz, 3.1 Hz, 1H), 4.31 (d, J=13.8 Hz, 1H), 4.32-4.18 (m, 2H), 4.03 (dd, J=13.6 Hz, 2.0 Hz, 1H), 2.13 (s, 6H), 1.15-0.97 (m, 28H).

Full text: Click here
Patent 2024
1H NMR Bicarbonate, Sodium brine Chloroform Chromatography Hexanes Nitrogen Nucleosides Nucleotides Petroleum Pharmaceutical Preparations triethylamine triethylenediamine Virus Diseases

Example 119

[Figure (not displayed)]

To a stirred solution of 322 (5.30 g, 10.58 mmol) in THF (106 mL) under nitrogen at 0° C., was added a solution of TBAF (1.0 M in THF, 21.17 mL) dropwise via syringe. The mixture was brought to rt and stirred 2 h. Volatiles were removed by rotary evaporation to give a crude yellow oil. The material was taken up in EtOAc and flash chromatography on the Combiflash (330 g column, 0 to 5% MeOH in DCM gradient) gave 2.8 g of mostly purified material as a white solid. This material was dissolved in methanol and immobilized on Celite, then loaded on top of a 10% w/w KF/silica column. Flash chromatography (10% MeOH in EtOAc) gave 323 (1.96 g, 63% yield over 3 steps) as a white solid. 1H NMR analysis showed a 13:1 β:α dr at the C2′position (integration of methyl doublet).

Major isomer 1H NMR (400 MHz, MeOH-d4) δ 8.18 (d, J=8.1 Hz, 1H), 7.04 (d, J=7.6 Hz, 1H), 5.95 (d, J=8.2 Hz, 1H), 3.93 (dd, J=12.2 Hz, 2.1 Hz, 1H), 3.89 (t, J=8.2 Hz, 1H), 2.64 (m, 1H), 0.99 (d, 7.1 Hz, 3H). ES+APCI (70 eV) m/z: [M+HCO2]302.9.

Full text: Click here
Patent 2024
1H NMR Celite Chromatography Isomerism Methanol Nitrogen Nucleosides Nucleotides Petroleum Pharmaceutical Preparations Silicon Dioxide Syringes Virus Diseases
Not available on PMC !

Example 4

In order to determine whether both trans-THC and cis-THC existed in crude CBD preparations and also if both were present what the ratio of these were, a further study was undertaken using CBD oil purchased from CBD-oil vendors.

Eight different crude CBD oil preparations were tested and all were found to comprise a mixture of trans-THC and cis-THC. Table 4.1 below details the ratios that were found in these oils.

TABLE 4.1
Ratio of trans-THC to cis-THC in crude CBD material
SampleMean ratio
number(trans-THC:cis-THC)
14.4:1
22.7:1
32.5:1
43.2:1
52.7:1
62.3:1
73.6:1
82.7:1

As Table 4.1 demonstrates the ratio of trans-THC to cis-THC varies within the different crude CBD oil preparations obtained from 2.3:1 to 4.4:1 (trans-THC:cis-THC). These ratios are far removed from the botanically derived purified CBD material defined in the present invention.

Full text: Click here
Patent 2024
Oils Petroleum
Not available on PMC !

Example 1

An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their percent composition in the crude oil fractions) are given in Table 1 below.

TABLE 1
Stream NameBoiling RangeNi (ppm)V (ppm)S (wt. %)N (ppm)
Hydrocarbon3.414.521.6444
Feed
Light StreamLess than<1<10.213
370° C.
Heavy StreamGreater than 4.414.21.4431
370° C.

Details of the un-hydrotreated heavy stream are shown below in Table 2, where the heavy stream is designated EX-1(A).

The same Arab light crude oil used in Example 1 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3(A), results are designated CE-1. Specifically, the temperature was 675° and the TOS was 75 seconds.

TABLE 4
3(A)3(B)3 (Combined)CE-1
(wt. %)(wt. %)(wt. %)(wt. %)
Dry Gas9.876.438.0610.80
Light Olefins39.1151.6743.4634.89
Ethylene11.8210.0610.6910.41
Propylene18.3425.7621.0516.51
Butylene8.9615.8411.727.96
Gasoline Range33.1224.6028.3824.21
Products
Coke4.926.615.5113.86
Conversion91.1494.4689.8687.38

As can be seen in Table 4, the combined yields of total light olefins from the present methods are significantly higher than the yields from the comparative methods. Further, each of examples 3(A), 3(B), and 3(Combined) show significantly decreased levels of coke formation relative to the comparative example CE-1.

Example 2

The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an Hz/oil ratio 1200:1(v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.

The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below and are designated EX-2.

TABLE 2
EX-1(A)EX-2
Kinematic viscosity at 100° C. (mm2/s)6
Density (g/ml)0.9650.8402
Nitrogen (ppm)120868.5
Sulfur (wt. %)3.10.007
Ni (ppm)10<1
V (ppm)32<1
Aromatics68.625.6

The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization of the product is given in Table 5 below.

TABLE 5
CE-13(B)
Temp. ° C.645645
T.O.S.(s)7575
Steaming Cond.810° C. for 6 hours
CAT/OIL6.488.00
Conversion (%)82.7794.46
Yields (wt. %)
H2 (wt. %)0.600.93
C1 (wt. %)4.823.71
C2 (wt. %)2.741.79
C2═ (wt. %)8.0710.06
C3 (wt. %)2.262.25
C3═ (wt. %)17.1625.76
iC4 (wt. %)0.671.58
nC4 (wt. %)0.550.69
t2C4═ (wt. %)2.393.92
1C4═ (wt. %)1.672.78
iC4═ (wt. %)3.596.01
c2C4═ (wt.%)1.903.14
1,3-BD (wt. %)0.010.63
Total Gas (wt. %)46.4463.25
Gasoline (wt. %)18.0924.60
LCO (wt. %)9.843.95
HCO (wt. %)7.381.59
Coke (wt. %)18.246.61
Groups (wt. %)
H2—C2 (dry gas)16.2416.49
C3—C4 (LPG)30.1946.77
C2═−C4═ (Light34.7952.30
olefins)
C3═+C426.7142.24
C4═ (Butenes)9.5516.48
Molar Ratios
mol/mol)
C2═/C23.156.03
C3═/C37.9711.97
C4═/C48.067.52
iC4═/C40.380.36
iC4═/iC45.513.94

As can be seen in Table 5, utilizing a hydrotreated heavy stream as the feed to the catalytic reactor results in higher conversion; greater yield of C2, C3, and C4 olefins; greater yield of gasoline; and significantly decreased coke formation, among other advantages.

Example 3

The respective fractions of Arab light crude were cracked at the conditions described below. A catalyst with the composition shown in Table 3 below as used in all of the reactions.

TABLE 3
ComponentWeight %Notes
ZSM-520Phosphorus impregnated at 7.5 wt. %
P2O5 on zeolite
USY21Lanthanum impregnated at 2.5 wt. %
La2O3 on zeolite
Alumina8Pural SB from Sasol
Clay49Kaolin
Silica2Added as colloidal silica Ludox TM-40

An Advanced Cracking Evaluation (ACE) unit was used to simulate a commercial FCC process. The reaction was run two times with fresh catalyst to simulate two separate FCC reaction zones in parallel.

Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B). The weight ratio of catalyst to hydrocarbons was 8.

It should be understood that time-on-stream (TOS) is directly proportional to residence time.

The light stream from Example 1 was fed to the advanced cracking evaluation unit. A time-on-stream (TOS) of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 675° C. was used.

The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization is shown in both Table 4 and Table 5.

The streams of Examples 3(A) and 3(B) were combined to form a single stream. The single stream simulates the output of processing a whole crude according to the methods of the present disclosure.

Example 3(Combined) is a weighted average of Examples 3(A) and 3(B). Example 3(A) represented 53 wt. % of Example 3(Combined). Example 3(B) represented 44 wt. % of Example 3 (Combined).

Full text: Click here
Patent 2024
Adjustment Disorders Alkenes Arabs butylene Catalysis Clay Cocaine Distillation ethylene GAS6 protein, human Gravity Hutterite cerebroosteonephrodysplasia syndrome Hydrocarbons Kaolin Lanthanum Light Molar Neoplasm Metastasis Nitrogen Oxide, Aluminum Petroleum phosphoric anhydride Phosphorus Pressure propylene Regeneration Silicon Dioxide Simulate composite resin Sulfur Viscosity Vision Zeolites

Example 1

An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their wt. % composition in the crude oil) are given in Table 1 below.

TABLE 1
Boiling Ni VS N
Stream NameRange(ppm)(ppm)(wt. %)(ppm)
Hydrocarbon4.414.21.6444
Feed
Light StreamLess than <1<10.8136
540° C.
Heavy StreamGreater than4.414.20.8308
540° C.

The same Arab light crude oil used in Example 3 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3.

TABLE 4
EX-3CE-1
Constituent(wt. %)(wt. %)
H20.680.72
C16.476.86
C23.103.23
C2 = (ethylene)10.8510.41
C31.671.65
C3 = (propylene)18.2016.51
iC40.460.42
nC40.410.56
t2C4 =2.221.93
1C4 =1.651.40
iC4 =3.573.09
c2C4 =1.791.54
1,3-BD1.110.99
Butenes9.227.96
Total Gas52.1749.31
Dry Gas10.2410.80
Total Light Olefins38.2734.89
Gasoline27.9224.21
LCO8.439.43
HCO2.043.20
Coke9.4413.86
Total Gas + Coke61.6163.17

As can be seen in Table 4, the yield of total light olefins from the inventive EX-3 is significantly higher than the yield of light olefins in the comparative CE-1. Additionally, EX-3 shows significantly lower coke formation than the comparative CE-1.

Example 2

The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an H2/oil ratio 1200:1 (v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.

The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below.

TABLE 2
Kinematic viscosity at 100° C.67.6 mm2/s
Density at 60° C.0.9 g/cm3
Sulfur (wt. %)0.36
Ni (ppm)1
V (ppm)3
Fe (ppm)<1
Na (ppm)<10

Example 3

A catalyst with the composition shown in Table 3 below as used in all of the reactions.

TABLE 3
ComponentWeight %Notes
ZSM-520Phosphorus impregnated at 7.5 wt. % P2O5
on zeolite
USY21Lanthanum impregnated at 2.5 wt. % La2O3
on zeolite
Alumina8Pural SB from Sasol
Clay49Kaolin
Silica2Added as colloidal silica Ludox TM-40

An Advanced Cracking Evaluation (ACE) unit was used to simulate a down-flow FCC reaction zone with multiple inlet points. The ACE unit emulates commercial FCC process.

Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B).

The light stream from Example 1 was combined with the hydrotreated heavy stream from Example 2 to form a combined feed stream. The combined feed stream was fed to the ACE unit. A time-on-stream (TOS) of 75 seconds and a temperature of 675° C. was used. Fresh catalyst was steamed deactivated at 810° C. for 6 hours to resemble the equilibrium catalyst in the actual process. The steam deactivated catalyst was used in this reaction. It should be understood that TOS is directly proportional to residence time.

Full text: Click here
Patent 2024
43-63 Adjustment Disorders Alkenes Arabs BD-38 butylene Catalysis Clay Cocaine Distillation ethylene Gravity Hydrocarbons Kaolin Lanthanum Light Neoplasm Metastasis Nitrogen Oxide, Aluminum Petroleum phosphoric anhydride Phosphorus Pressure propylene Regeneration Silicon Dioxide Steam Sulfur Viscosity Vision Zeolites

Top products related to «Petroleum»

The Inova-400 is a laboratory instrument designed for nuclear magnetic resonance (NMR) spectroscopy. It provides a magnetic field strength of 400 MHz for the analysis of chemical samples. The Inova-400 is capable of performing various NMR experiments to characterize the structure and properties of molecules.
The Sorvell ST40R Centrifuge is a laboratory instrument designed for the separation of samples by centrifugal force. It features a rotor capacity of 4 x 750 mL and can achieve a maximum speed of 17,000 rpm, generating a maximum relative centrifugal force of 29,910 x g.
Sourced in United States, Germany, Italy, United Kingdom, India, Spain, Japan, Poland, France, Switzerland, Belgium, Canada, Portugal, China, Sweden, Singapore, Indonesia, Australia, Mexico, Brazil, Czechia
Toluene is a colorless, flammable liquid with a distinctive aromatic odor. It is a common organic solvent used in various industrial and laboratory applications. Toluene has a chemical formula of C6H5CH3 and is derived from the distillation of petroleum.
Sourced in Germany, United States, Italy, India, United Kingdom, China, France, Poland, Spain, Switzerland, Australia, Canada, Sao Tome and Principe, Brazil, Ireland, Japan, Belgium, Portugal, Singapore, Macao, Malaysia, Czechia, Mexico, Indonesia, Chile, Denmark, Sweden, Bulgaria, Netherlands, Finland, Hungary, Austria, Israel, Norway, Egypt, Argentina, Greece, Kenya, Thailand, Pakistan
Methanol is a clear, colorless, and flammable liquid that is widely used in various industrial and laboratory applications. It serves as a solvent, fuel, and chemical intermediate. Methanol has a simple chemical formula of CH3OH and a boiling point of 64.7°C. It is a versatile compound that is widely used in the production of other chemicals, as well as in the fuel industry.
Alcalase® 2.4 FG is a laboratory enzyme product manufactured by Novozymes. It is an alkaline protease that can be used to hydrolyze proteins.
Sourced in Germany, United States, United Kingdom, Italy, India, France, China, Australia, Spain, Canada, Switzerland, Japan, Brazil, Poland, Sao Tome and Principe, Singapore, Chile, Malaysia, Belgium, Macao, Mexico, Ireland, Sweden, Indonesia, Pakistan, Romania, Czechia, Denmark, Hungary, Egypt, Israel, Portugal, Taiwan, Province of China, Austria, Thailand
Ethanol is a clear, colorless liquid chemical compound commonly used in laboratory settings. It is a key component in various scientific applications, serving as a solvent, disinfectant, and fuel source. Ethanol has a molecular formula of C2H6O and a range of industrial and research uses.
Sourced in United States, Germany, United Kingdom, India, Italy, Spain, France, Canada, Switzerland, China, Australia, Brazil, Poland, Ireland, Sao Tome and Principe, Chile, Japan, Belgium, Portugal, Netherlands, Macao, Singapore, Sweden, Czechia, Cameroon, Austria, Pakistan, Indonesia, Israel, Malaysia, Norway, Mexico, Hungary, New Zealand, Argentina
Chloroform is a colorless, volatile liquid with a characteristic sweet odor. It is a commonly used solvent in a variety of laboratory applications, including extraction, purification, and sample preparation processes. Chloroform has a high density and is immiscible with water, making it a useful solvent for a range of organic compounds.
Sourced in United States, Germany, United Kingdom, France, Italy, India, Canada, China, Poland, Sao Tome and Principe, Spain, Switzerland, Japan, Macao, Malaysia, Brazil, Belgium, Finland, Ireland, Netherlands, Singapore, Austria, Australia, Sweden, Denmark, Romania, Portugal, Czechia, Argentina
Sodium dodecyl sulfate (SDS) is a commonly used anionic detergent for various laboratory applications. It is a white, crystalline powder that has the ability to denature proteins by disrupting non-covalent bonds. SDS is widely used in biochemical and molecular biology techniques, such as protein electrophoresis, Western blotting, and cell lysis.
Sourced in Germany, United States, United Kingdom, India, Italy, France, Spain, Australia, China, Poland, Switzerland, Canada, Ireland, Japan, Singapore, Sao Tome and Principe, Malaysia, Brazil, Hungary, Chile, Belgium, Denmark, Macao, Mexico, Sweden, Indonesia, Romania, Czechia, Egypt, Austria, Portugal, Netherlands, Greece, Panama, Kenya, Finland, Israel, Hong Kong, New Zealand, Norway
Hydrochloric acid is a commonly used laboratory reagent. It is a clear, colorless, and highly corrosive liquid with a pungent odor. Hydrochloric acid is an aqueous solution of hydrogen chloride gas.
Sourced in Germany, United States
The ST 40R is a laboratory centrifuge designed for general-purpose applications. It features a fixed-angle rotor that can accommodate 40 tubes of up to 50 mL capacity. The centrifuge offers a maximum speed of 4,000 rpm and a maximum RCF of 3,000 x g. It is suitable for a variety of common laboratory procedures that require centrifugation.

More about "Petroleum"

Petroleum, also known as crude oil, is a dense, flammable liquid hydrocarbon mixture found in natural underground reservoirs.
It is a crucial global energy source and raw material, with applications spanning transportation, manufacturing, and petrochemicals.
Through refining, petroleum yields a wide range of products, including gasoline, diesel fuel, lubricants, and asphalt.
This vital natural resource has significant economic and political implications, with its production, distribution, and consumption being extensively researched.
Key areas of petroleum science include geology, engineering, chemistry, and economics.
Researchers aim to enhance the efficiency, sustainability, and environmental impact of petroleum exploration, extraction, refining, and utilization.
Synonyms for petroleum include fossil fuel, crude, and mineral oil.
Related terms include hydrocarbons, natural gas, refining, and petrochemicals.
Abbreviations used in the field include API (American Petroleum Institute) and OPEC (Organization of the Petroleum Exporting Countries).
Subtopics in petroleum research span topics such as reservoir characterization, drilling and production techniques, refining processes (e.g., distillation, cracking, reforming), and the environmental impacts of petroleum usage.
Specialized equipment and materials used in petroleum research may include the Inova-400 analytical instrument, Sorvell ST40R centrifuge, and chemicals like toluene, methanol, Alcalase® 2.4 FG, ethanol, chloroform, sodium dodecyl sulfate, and hydrochloric acid.
By leveraging the latest advancements in petroleum science, researchers can address the world's growing energy demands while mitigating concerns about climate change and environmental protection.