Anthropometric measurements, including weight, height, hip, and WC were measured with the subjects wearing light clothing and no shoes according to the World Health Organization report.29 WC was measured to the nearest centimeter using a nonstretchable tailors’ measuring tape at the midpoint between the bottom of the rib cage and above the top of the iliac crest during minimal respiration. Hip circumference was measured at the widest part of the body below the waist. Waist and hip circumferences were measured using a circumference measuring tape (Seca 200, Hamburg, Germany). BMI was calculated as the ratio of weight in kilograms to the square of height in meters. Readings of systolic and diastolic blood pressure were taken with the subject seated and the arm at heart level, after at least five minutes of rest, using a standardized mercury sphygmomanometer.30
For laboratory analysis and all biochemical measurements, two sets of fasting blood samples were drawn from a cannula inserted in the antecubital vein and put into sodium fluoride potassium oxalate tubes for glucose and into lithium heparin vacuum tubes for lipids. Samples were centrifuged at 3000 rpm for 10 minutes within one hour at the survey site, and plasma was transferred to separate labeled tubes and transferred immediately in cold boxes filled with ice to the Central Laboratory of the National Center for Diabetes and Endocrinology. All biochemical measurements were carried out by the same team of laboratory technicians and using the same method throughout the study period.
Lipid parameters, ie, total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglyceride (TG), and glucose were analyzed for all samples using enzymatic assays. Glucose levels were determined using the enzymatic reference method with hexokinase.31 (link) TG values were obtained using COBAS Integra 700 (Roche Diagnostics Ltd, Indianapolis, IN) with the cassette COBAS Integra TG (Roche Diagnostics Ltd) using an enzymatic colorimetric method with glycerol phosphate oxidase and 4-aminophenazone.32 (link) Total cholesterol was analyzed using an enzymatic colorimetric method with COBAS Integra Cholesterol Gen.2 (Roche Diagnostics Ltd). HDL and LDL values were obtained on COBAS Integra 700 using a homogeneous enzymatic colorimetric assay.33 (link),34 (link) The assays were conducted according to the manufacturer’s instructions.
For laboratory analysis and all biochemical measurements, two sets of fasting blood samples were drawn from a cannula inserted in the antecubital vein and put into sodium fluoride potassium oxalate tubes for glucose and into lithium heparin vacuum tubes for lipids. Samples were centrifuged at 3000 rpm for 10 minutes within one hour at the survey site, and plasma was transferred to separate labeled tubes and transferred immediately in cold boxes filled with ice to the Central Laboratory of the National Center for Diabetes and Endocrinology. All biochemical measurements were carried out by the same team of laboratory technicians and using the same method throughout the study period.
Lipid parameters, ie, total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglyceride (TG), and glucose were analyzed for all samples using enzymatic assays. Glucose levels were determined using the enzymatic reference method with hexokinase.31 (link) TG values were obtained using COBAS Integra 700 (Roche Diagnostics Ltd, Indianapolis, IN) with the cassette COBAS Integra TG (Roche Diagnostics Ltd) using an enzymatic colorimetric method with glycerol phosphate oxidase and 4-aminophenazone.32 (link) Total cholesterol was analyzed using an enzymatic colorimetric method with COBAS Integra Cholesterol Gen.2 (Roche Diagnostics Ltd). HDL and LDL values were obtained on COBAS Integra 700 using a homogeneous enzymatic colorimetric assay.33 (link),34 (link) The assays were conducted according to the manufacturer’s instructions.