Determination of total phenolic content (TPC): Amount of TP were assessed using the Folin-Ciocalteu reagent [25 ]. Briefly, the crude extract (50 mg) was mixed with Folin-Ciocalteu reagent (0.5 mL) and deionized water (7.5 mL). The mixture was kept at room temperature for 10 min, and then 20% sodium carbonate (w/v, 1.5 mL) was added. The mixture was heated in a water bath at 40 oC for 20 min and then cooled in an ice bath; absorbance was read at 755 nm using a spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan). Amounts of TP were calculated using gallic acid calibration curve within range of 10-100 mgL-1(R2 = 0.9986). The results were expressed as gallic acid equivalents (GAE) g/100g of dry plant matter. All samples were analyzed thrice and the results averaged. The results are reported on dry weight basis (DW).
Determination of total flavonoid contents (TFC): The TFC were measured following a previously reported spectrophotometric method [26 (link)]. Briefly, extracts of each plant material (1 mL containing 0.1 mg/mL) were diluted with water (4 mL) in a 10 mL volumetric flask. Initially, 5% NaNO2 solution (0.3 mL) was added to each volumetric flask; at 5 min, 10% AlCl3 (0.3 mL) was added; and at 6 min, 1.0 M NaOH (2 mL) was added. Water (2.4 mL) was then added to the reaction flask and mixed well. Absorbance of the reaction mixture was read at 510 nm. TFC were determined as catechin equivalents (g/100g of dry weight). Three readings were taken for each sample and the results averaged.
Determination of reducing power: The reducing power of the extracts was determined according to the procedure described earlier [27 ], with a slight modification. Concentrated extract (2.5-10.0 mg) was mixed with sodium phosphate buffer (5.0 mL, 0.2 M, pH 6.6) and potassium ferricyanide (5.0 mL, 1.0%); the mixture was incubated at 50 oC for 20 min. Then 10% trichloroacetic acid (5 mL) was added and the mixture centrifuged at 980 g for 10 min at 5 °C in a refrigerated centrifuge (CHM-17; Kokusan Denki, Tokyo, Japan). The upper layer of the solution (5.0 mL) was decanted and diluted with 5.0 mL of distilled water and ferric chloride (1.0 mL, 0.1%), and absorbance read at 700 nm using a spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan). All samples were analyzed thrice and the results averaged.
DPPH. scavenging assay: 1, 1’–diphenyl–2-picrylhydrazyl (DPPH) free radical scavenging activity of the extracts was assessed using the procedure reported earlier [28 (link)]. Briefly, to extract (1.0 mL) containing 25 μg/mL of dry matter in methanol, freshly prepared solution of DPPH (0.025 g/L, 5.0 mL) was added. Absorbance at 0, 0.5, 1, 2, 5 and 10 min was measured at 515 nm using a spectrophotometer. The scavenging amounts of DPPH radical (DPPH.) was calculated from a calibration curve. Absorbance read at the 5th min was used for comparison of radical scavenging activity of the extracts.
Determination of antioxidant activity in linoleic acid system: The antioxidant activity of the tested plant extracts was also determined by measuring the oxidation of linoleic acid [28 (link)]. Five mg of each plant extract were added separately to a solution of linoleic acid (0.13 mL), 99.8% ethanol (10 mL) and 0.2 M sodium phosphate buffer (pH 7, 10 mL). The mixture was made up to 25 mL with distilled water and incubated at 40 oC up to 360 h. Extent of oxidation was measured by peroxide value applying thiocyanate method as described by Yen et al. [27 ]. Briefly, ethanol (75% v/v, 10 mL ), aqueous solution of ammonium thiocyanate (30% w/v, 0.2 mL), sample solution (0.2 mL) and ferrous chloride (FeCl2) solution (20 mM in 3.5% HCl; v/v, 0.2 mL) were added sequentially. After 3 min of stirring, the absorption was measured at 500 nm using a spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan). A control contained all reagents with exception of extracts. Synthetic antioxidants butylated hydroxytoluene (BHT) was used as a positive control. Percent inhibition of linoleic acid oxidation was calculated with the following equation: 100 – [(increase in absorbance of sample at 360 h / increase in absorbance of control at 360 h) × 100], to express antioxidant activity.
Determination of total flavonoid contents (TFC): The TFC were measured following a previously reported spectrophotometric method [26 (link)]. Briefly, extracts of each plant material (1 mL containing 0.1 mg/mL) were diluted with water (4 mL) in a 10 mL volumetric flask. Initially, 5% NaNO2 solution (0.3 mL) was added to each volumetric flask; at 5 min, 10% AlCl3 (0.3 mL) was added; and at 6 min, 1.0 M NaOH (2 mL) was added. Water (2.4 mL) was then added to the reaction flask and mixed well. Absorbance of the reaction mixture was read at 510 nm. TFC were determined as catechin equivalents (g/100g of dry weight). Three readings were taken for each sample and the results averaged.
Determination of reducing power: The reducing power of the extracts was determined according to the procedure described earlier [27 ], with a slight modification. Concentrated extract (2.5-10.0 mg) was mixed with sodium phosphate buffer (5.0 mL, 0.2 M, pH 6.6) and potassium ferricyanide (5.0 mL, 1.0%); the mixture was incubated at 50 oC for 20 min. Then 10% trichloroacetic acid (5 mL) was added and the mixture centrifuged at 980 g for 10 min at 5 °C in a refrigerated centrifuge (CHM-17; Kokusan Denki, Tokyo, Japan). The upper layer of the solution (5.0 mL) was decanted and diluted with 5.0 mL of distilled water and ferric chloride (1.0 mL, 0.1%), and absorbance read at 700 nm using a spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan). All samples were analyzed thrice and the results averaged.
DPPH. scavenging assay: 1, 1’–diphenyl–2-picrylhydrazyl (DPPH) free radical scavenging activity of the extracts was assessed using the procedure reported earlier [28 (link)]. Briefly, to extract (1.0 mL) containing 25 μg/mL of dry matter in methanol, freshly prepared solution of DPPH (0.025 g/L, 5.0 mL) was added. Absorbance at 0, 0.5, 1, 2, 5 and 10 min was measured at 515 nm using a spectrophotometer. The scavenging amounts of DPPH radical (DPPH.) was calculated from a calibration curve. Absorbance read at the 5th min was used for comparison of radical scavenging activity of the extracts.
Determination of antioxidant activity in linoleic acid system: The antioxidant activity of the tested plant extracts was also determined by measuring the oxidation of linoleic acid [28 (link)]. Five mg of each plant extract were added separately to a solution of linoleic acid (0.13 mL), 99.8% ethanol (10 mL) and 0.2 M sodium phosphate buffer (pH 7, 10 mL). The mixture was made up to 25 mL with distilled water and incubated at 40 oC up to 360 h. Extent of oxidation was measured by peroxide value applying thiocyanate method as described by Yen et al. [27 ]. Briefly, ethanol (75% v/v, 10 mL ), aqueous solution of ammonium thiocyanate (30% w/v, 0.2 mL), sample solution (0.2 mL) and ferrous chloride (FeCl2) solution (20 mM in 3.5% HCl; v/v, 0.2 mL) were added sequentially. After 3 min of stirring, the absorption was measured at 500 nm using a spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan). A control contained all reagents with exception of extracts. Synthetic antioxidants butylated hydroxytoluene (BHT) was used as a positive control. Percent inhibition of linoleic acid oxidation was calculated with the following equation: 100 – [(increase in absorbance of sample at 360 h / increase in absorbance of control at 360 h) × 100], to express antioxidant activity.
Full text: Click here