The largest database of trusted experimental protocols

Rutin

Rutin is a flavonoid glycoside found in various plants, including buckwheat, citrus fruits, and elderflowers.
It has been studied for its potential antioxidant, anti-inflammatory, and neuroprotective properties.
Rutin has been investigated for its ability to modulate cellular signaling pathways and may have therapeutic applications in conditions such as cardiovascular disease, diabetes, and neurodegenerative disorders.
Researchers can leverage PubCompare.ai to optimize their rutin studies by accessing detailed protocols from literature, preprints, and patents, and utilizing AI-driven comparisons to identify the best protocols and products.
This powerful tool can enhance reproducibility and accuracy in rutin research.

Most cited protocols related to «Rutin»

Arabidopsis thaliana (ecotype Col-0) was grown under controlled conditions and pooled after harvest. Methanolic extracts were prepared from ground seed and leaf tissue. o-Anisic acid, biochanin A, p-coumaric acid, ferulic acid, N-(3-indolylacetyl)-L-valine, kinetin, indole-3-acetonitrile, indole-3-carbaldehyde, kaempferol, phloretin, phlorizin and phenylglycine, rutin, and phenylalanine-d5 were used as marker compounds. The chromatographic separations were performed on an Acquity UPLC system (Waters) equipped with a modified C18 column with a 20 min water/acetonitrile gradient. The eluted compounds were detected by a Bruker MicrOTOF-Q in positive ion mode at a scan rate of 3 Hz. Mass calibration was performed against lithium formiate. The detailed experimental setup is available as Additional file 1.
Sample 1 A mixture containing each of the fourteen marker compounds (referred to as MM14) at a concentration of 20 μM was prepared and analysed by UPLC/ESI-QTOF-MS.
Sample set 2 Mixtures containing solvent and seed or leaf extracts were prepared with following volume portions (solvent/seed/leaf, v/v/v): 0/100/0, 25/75/0, 50/50/0, 75/25/0, 0/0/100, 25/0/75, 50/0/50, 75/0/25. The sample set (8 samples) was analysed by UPLC/ESI-QTOF-MS in ten technical replications.
Sample set 3 Mixtures containing solvent, seed, and leaf extracts were prepared with following volume portions (solvent/seed/leaf, v/v/v): 75/0/25, 0/75/25, 0/50/50. The sample set (3 samples) was analysed by UPLC/ESI-QTOF-MS in ten technical replications.
All files were acquired in centroid mode and converted to mzData file format using Bruker CompassXport software. The data sets are available at .
Full text: Click here
Publication 2008
2-methoxybenzoic acid acetonitrile Arabidopsis thalianas biochanin A Chromatography Cotyledon DNA Replication Ecotype ferulic acid indole-3-acetonitrile indole-3-carbaldehyde kaempferol Kinetin Lithium Methanol Phenylalanine Phloretin Phlorhizin Plant Leaves Radionuclide Imaging Rutin Solvents Tissues trans-3-(4'-hydroxyphenyl)-2-propenoic acid Valine
Total flavonoid content was determined following a method by Park et al (2008) [28 (link)]. In a 10 ml test tube, 0.3 ml of extracts, 3.4 ml of 30% methanol, 0.15 ml of NaNO2 (0.5 M) and 0.15 ml of AlCl3.6H2O (0.3 M) were mixed. After 5 min, 1 ml of NaOH (1 M) was added. The solution was mixed well and the absorbance was measured against the reagent blank at 506 nm. The standard curve for total flavonoids was made using rutin standard solution (0 to 100 mg/l) under the same procedure as earlier described. The total flavonoids were expressed as milligrams of rutin equivalents per g of dried fraction.
Full text: Click here
Publication 2012
Aluminum Chloride Flavonoids Methanol Rutin
The total phenolic content was determined by employing the methods given in the literature (Slinkard and Singleton, 1977 (link)) with some modification. Sample solution (1 mg/mL; 0.25 mL) was mixed with diluted Folin–Ciocalteu reagent (1 mL, 1:9, v/v) and shaken vigorously. After 3 min, Na2CO3 solution (0.75 mL, 1%) was added and the sample absorbance was read at 760 nm after a 2 h incubation at room temperature. The total phenolic content was expressed as milligrams of gallic acid equivalents (mg GAE/g extract) (Vlase et al., 2014 ).
The total flavonoids content was determined using AlCl3 method (Zengin et al., 2014 (link)). Briefly, sample solution (1 mg/mL; 1 mL) was mixed with the same volume of aluminum trichloride (2%) in methanol. Similarly, a blank was prepared by adding sample solution (1 mL) to methanol (1 mL) without AlCl3. The sample and blank absorbances were read at 415 nm after a 10 min incubation at room temperature. The absorbance of the blank was subtracted from that of the sample. Rutin was used as a reference standard and the total flavonoid content was expressed as milligrams of rutin equivalents (mg RE/g extract) (Mocan et al., 2015 (link)).
The total saponins content of the extract was determined by the vanillin-sulfuric acid method (Aktumsek et al., 2013 (link)). Sample solution (1 mg/mL; 0.25 mL) was mixed with vanillin (0.25 mL, 8%) and sulfuric acid (2 mL, 72%). The mixture was incubated for 10 min at 60°C. Then the mixture was cooled for another 15 min, followed by the sample absorbance measurement at 538 nm. The total saponin content was expressed as milligrams of quillaja equivalents (mg QAE/g extract).
The total triterpenoids content of the extracts was determined according to Zhang et al. (2010) (link) method with some modifications. Briefly, sample solution (1 mg/mL; 500 μL) was mixed with the vanillin–glacial acetic acid (5%, w/v, 0.5 mL) and 1 mL of perchloric acid. The mixture was incubated at 60°C for 10 min, cooled in an ice water bath for 15 min and then 5 mL glacial acetic acid was added and mixed well. After 6 min, the absorbance was read at 538 nm. Oleanolic acid was used as a reference standard and the content of total triterpenoids was expressed as oleanolic acid equivalents (mg OAE/g extract) through a calibration curve with oleanolic acid.
HPLC-PDA analyses were performed on a Waters liquid chromatograph equipped with a model 600 solvent pump and a 2996 photodiode array detector, and Empower v.2 Software (Waters Spa, Milford, MA, United States) was used for acquisition of data. A C18 reversed-phase packing column (Prodigy ODS (3), 4.6 × 150 mm, 5 μm; Phemomenex, Torrance, CA, United States) was used for the separation and the column was thermostated at 30 ± 1°C using a Jetstream2 Plus column oven. The injection volume was 20 μL. The mobile phase was directly on-line degassed by using Biotech DEGASi, mod. Compact (LabService, Anzola dell’Emilia, Italy). Gradient elution was performed using the mobile phase water-acetonitrile (93:7, v/v, 3% acetic acid) (Zengin et al., 2016 (link)). The UV/Vis acquisition wavelength was set in the range of 200–500 nm. The quantitative analyses were achieved at maximum wavelength for each compound.
Full text: Click here
Publication 2017
Acetic Acid acetonitrile Aluminum Chloride Bath Flavonoids folin Gallic Acid High-Performance Liquid Chromatographies Ice Liquid Chromatography Methanol Oleanolic Acid Perchloric Acid Prodigy Quillaja Rutin Saponin Saponins Solvents sulfuric acid Triterpenes vanillin
Total phenolic content of extract was measured using a modified Folin-Ciocalteu procedure [25 (link)]. In brief, 100 μl of various concentrations of extract were mixed with 1.0 ml of Folin–Ciocalteu reagent (previously diluted 10-fold with distilled water). After 5 min, 1.0 ml of 7.5 % sodium bicarbonate solution was added to the mixture and allowed to stand for 90 min at room temperature in the dark. The absorbance of the mixture was measured at 725 nm. A calibration curve was prepared using a standard solution of gallic acid and the total phenolic content was expressed as mg gallic acid equivalents pergram of extract (mg GAE/ g extract).
The flavonoid content was determined according to method of Hatamnia with a minor modification [26 (link)]. Briefly, 50 μl of sodium nitrate solution (5 %) was added to 500 μl of the extracts and allowed to react for 5 min. Then 50 μl of 10 % aluminum chloride solution was added. Finally, 250 μl of 4 % sodium hydroxide solution was added into the mixture 5 min later. The absorbance of the mixture was immediately recorded at 518 nm. A calibration curve was prepared using a standard solution of rutin and the total flavonoid content was expressed as mg of rutin equivalents pergram of extract (mg RU/ g extract).
Full text: Click here
Publication 2015
Aluminum Chloride Bicarbonate, Sodium Flavonoids folin Gallic Acid Rutin Sodium Hydroxide sodium nitrate
The collection of crystal (X-ray) structure of the enzymes [PDB: 3RX3 (aldose reductase), 3W37 (α-glucosidase), and 1DHK (α-amylase)] were from the RSCB Protein Data Bank (https://www.rcsb.org/ accessed on 12 December 2020). The UCSF Chimera software V1.14 was used in the preparation of the enzymes in readiness for docking [40 (link)], PubChem (https://pubchem.ncbi.nlm.nih.gov/ accessed on 15 December 2020) was used to retrieve the structures of the chromatogram-identified phenolic compounds (sinapic acid, cacticin, hyperoside, 1,3-dicaffeoxyl quinic acid, procyanidin, rutin, epicatechin, isorhamnetin-3-O-rutinoside, chlorogenic acid, myricetin and luteolin-7-O-beta-d-glucoside) and standards (acarbose and ranirestat) and optimization of their three-dimensional structures executed using Avogadro software as previously reported [41 (link)]. The optimized compounds (ligands) and the enzymes were subsequently subjected to molecular docking.
The docking of the prepared phenolic compounds and standards into binding pockets of the enzymes (α-amylase, α-glucosidase, and aldose reductase) was by Autodock Vina Plugin on Chimera V1.14. Judging by the docking scores, complexes identified to have the best pose for each compound were ranked, selected and further analyzed through 100 ns molecular dynamics simulation (MDS).
The MDS was achieved as recently reported [28 (link)], using the GPU (force fields) version obtainable in AMBER package, where the description of the system by FF18SB variant of the AMBER force field was carried out [42 (link)]. With the aid of Restrained Electrostatic Potential (RESP) and the General Amber Force Field (GAFF) methods of the ANTECHAMBER assisted with information on atomic partial charges for the compounds. Hydrogen atoms and Na+ and Cl- counter ions (to neutralize the system) were made possible with Leap module of AMBER 18. The residues were numbered 1–336, 913, and 496, respectively, for aldose reductase, α-glucosidase and α-amylase. The system in each case was then lowered implicitly within an orthorhombic box of TIP3P water molecules such that all atoms were within 8Å of any box edge. MDS total time carried-out were 100 ns. For each simulation, hydrogens atoms were constricted using the SHAKE algorithm. The step size of each simulation was 2 fs, and an SPFP precision model was used. The simulations align with the isobaric-isothermal ensemble (NPT), having randomized seeding, Berendsen barostat maintains 1 bar constant pressure, 2 ps pressure-coupling constant, 300 K temperature and Langevin thermostat with a collision frequency of 1.0 ps [43 (link)].
Using PTRAJ, the systems were subsequently saved, and each trajectory analyzed every 1 ps, and the RoG, RMSF, and RMSD were analyzed with CPPTRAJ module (AMBER 18 suit).
Molecular Mechanics/GB Surface Area method (MM/GBSA) was adopted to assess the free binding energy while comparison of the systems binding affinity followed afterwards [44 (link)]. Binding free energy was averaged over 100,000 snapshots extracted from the 100 ns trajectory. The ΔG for each system (enzyme, complex and phenolics) was estimated as earlier reported [45 (link)].
Full text: Click here
Publication 2021
Acarbose AKR1B1 protein, human alpha Glucosidase Amber Amylase Chimera Chlorogenic Acid Electrostatics Enzymes Epicatechin Glucosides Hydrogen hyperoside Ions isorhamnetin 3-O-rutinoside Ligands Luteolin Mechanics myricetin Pressure procyanidin Quinic Acid Radiography ranirestat Rutin sinapinic acid Tremor

Most recents protocols related to «Rutin»

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2023
Biological Assay diphenyl Free Radicals Light Rutin

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2023
Biological Assay Coenzyme I Formazans Methylphenazonium Methosulfate NADH Nitroblue Tetrazolium Psychological Inhibition Rutin Superoxides

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2023
Anabolism Anions Cell Culture Techniques Cells DNA, Complementary Endoribonucleases Free Radicals GAPDH protein, human Genes, Housekeeping HaCaT Cells Hyperostosis, Diffuse Idiopathic Skeletal kojic acid Oligonucleotide Primers Real-Time Polymerase Chain Reaction RNA, Messenger Rutin SYBR Green I trizol

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2023
Agaricales Arginine Hydrochloride Bromides Cell Culture Techniques Cells Culture Media Dietary Supplements Dopa Esters Gallic Acid kojic acid Lipopolysaccharides lupalbigenin Monophenol Monooxygenase NG-Nitroarginine Methyl Ester Rutin Solvents Stem, Plant SYBR Green I trizol
Dry lotus (Nelumbo) leaves was provided by Hunan Zhenxing Traditional Chinese Medicine Co., Ltd. (Changsha, Hunan, China). Cellulase (CAS 9012-54-8, S10041) was bought from Shanghai Yuanye Biotechnology Co., Ltd (Shanghai, China). Total dietary fiber assay kit (TDF-200A) was bought from Megazyme International Ireland Ltd (Bray, Ireland). Rutin, hyperoside, isoquercitrin, astragalin and quercetin were bought from Chengdu Aifa Biotechnology Co., Ltd (Chengdu, Sichuan, China). Catechin, myricetin and kaempferol were bought from Hefei Bome Biotechnology Co. Ltd (Hefei, Anhui, China). DPPH and ABTS were brought from Shanghai Maclean Biochemical Technology Co. Ltd (Shanghai, China). The rest of reagents were brought from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China) and were analytical pure.
Full text: Click here
Publication 2023
2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid astragalin Biological Assay Catechin Cellulase Dietary Fiber hyperoside isoquercetin kaempferol Lotus myricetin Nelumbo Quercetin Rutin

Top products related to «Rutin»

Sourced in United States, Germany, Italy, France, China, Spain, India, Australia, Poland, United Kingdom, Sao Tome and Principe, Ireland, Brazil, Portugal, Canada, Switzerland, Japan
Rutin is a laboratory reagent used for analytical and research purposes. It is a flavonoid compound derived from various plant sources. Rutin exhibits antioxidant and anti-inflammatory properties, and is commonly used in assays, chromatography, and other analytical techniques.
Sourced in United States, Germany, Italy, Spain, France, India, China, Poland, Australia, United Kingdom, Sao Tome and Principe, Brazil, Chile, Ireland, Canada, Singapore, Switzerland, Malaysia, Portugal, Mexico, Hungary, New Zealand, Belgium, Czechia, Macao, Hong Kong, Sweden, Argentina, Cameroon, Japan, Slovakia, Serbia
Gallic acid is a naturally occurring organic compound that can be used as a laboratory reagent. It is a white to light tan crystalline solid with the chemical formula C6H2(OH)3COOH. Gallic acid is commonly used in various analytical and research applications.
Sourced in United States, Germany, Italy, India, Spain, United Kingdom, France, Poland, China, Sao Tome and Principe, Australia, Brazil, Macao, Switzerland, Canada, Chile, Japan, Singapore, Ireland, Mexico, Portugal, Sweden, Malaysia, Hungary
Quercetin is a natural compound found in various plants, including fruits and vegetables. It is a type of flavonoid with antioxidant properties. Quercetin is often used as a reference standard in analytical procedures and research applications.
Sourced in United States, Germany, Italy, Poland, France, China, United Kingdom, Spain, Switzerland, India, Sao Tome and Principe, Australia, Ireland, Macao, Mexico, Brazil, Canada, Czechia, Japan
Chlorogenic acid is a compound found in various plants, including coffee beans. It is a type of polyphenol and is commonly used in laboratory settings for research purposes.
Sourced in United States, Germany, Italy, France, Poland, Spain, China, United Kingdom, Australia, Sao Tome and Principe, Switzerland, India, Ireland, Canada, Macao, Brazil, Austria, Mexico, Czechia, Portugal
Caffeic acid is a phenolic compound commonly found in various plants. It serves as a laboratory standard for the identification and quantification of similar phenolic compounds using analytical techniques such as high-performance liquid chromatography (HPLC) and spectrophotometry.
Sourced in United States, Germany, Italy, France, Australia, India, Spain, United Kingdom, China, Poland, Sao Tome and Principe, Japan, Portugal, Canada, Switzerland, Brazil, Malaysia, Singapore, Macao, Belgium, Ireland, Mexico, Hungary
Catechin is a natural polyphenolic compound found in various plants, including green tea. It functions as an antioxidant, with the ability to scavenge free radicals and protect cells from oxidative stress.
Sourced in Germany, United States, Italy, India, United Kingdom, China, France, Poland, Spain, Switzerland, Australia, Canada, Sao Tome and Principe, Brazil, Ireland, Japan, Belgium, Portugal, Singapore, Macao, Malaysia, Czechia, Mexico, Indonesia, Chile, Denmark, Sweden, Bulgaria, Netherlands, Finland, Hungary, Austria, Israel, Norway, Egypt, Argentina, Greece, Kenya, Thailand, Pakistan
Methanol is a clear, colorless, and flammable liquid that is widely used in various industrial and laboratory applications. It serves as a solvent, fuel, and chemical intermediate. Methanol has a simple chemical formula of CH3OH and a boiling point of 64.7°C. It is a versatile compound that is widely used in the production of other chemicals, as well as in the fuel industry.
Sourced in United States, Germany, Italy, India, China, Spain, Poland, France, United Kingdom, Australia, Brazil, Singapore, Switzerland, Hungary, Mexico, Japan, Denmark, Sao Tome and Principe, Chile, Malaysia, Argentina, Belgium, Cameroon, Canada, Ireland, Portugal, Israel, Romania, Czechia, Macao, Indonesia
DPPH is a chemical compound used as a free radical scavenger in various analytical techniques. It is commonly used to assess the antioxidant activity of substances. The core function of DPPH is to serve as a stable free radical that can be reduced, resulting in a color change that can be measured spectrophotometrically.
Sourced in United States, Germany, Poland, Italy, China, Spain, Sao Tome and Principe, United Kingdom, France, India, Malaysia, Czechia, Switzerland, Macao, Australia
Kaempferol is a chemical compound used as a lab equipment product. It is a type of flavonoid, a class of plant-based compounds. Kaempferol is primarily used in research and scientific applications.
Sourced in United States, Germany, Italy, Spain, France, China, Poland, United Kingdom, Sao Tome and Principe, Switzerland, Canada, Ireland, India, Australia, Japan, Macao, Portugal
P-coumaric acid is a naturally occurring phenolic compound that can be utilized as a reference standard or an analytical reagent in various laboratory settings. It is a white to off-white crystalline solid that is soluble in organic solvents. P-coumaric acid is commonly used as a standard in analytical techniques, such as high-performance liquid chromatography (HPLC) and spectrophotometric measurements, to quantify and characterize similar compounds in sample matrices.

More about "Rutin"

Rutin, a flavonoid glycoside found in various plants like buckwheat, citrus fruits, and elderflowers, has been extensively studied for its potential therapeutic applications.
This powerful phytochemical exhibits antioxidant, anti-inflammatory, and neuroprotective properties, making it a subject of great interest in the fields of cardiovascular disease, diabetes, and neurodegenerative disorders.
Researchers can leverage PubCompare.ai, a cutting-edge tool, to optimize their rutin studies.
This platform allows them to access detailed protocols from literature, preprints, and patents, and utilize AI-driven comparisons to identify the best protocols and products.
This powerful feature can enhance the reproducibility and accuracy of rutin research, crucial for advancing our understanding of this versatile compound.
In addition to rutin, other related phytochemicals like gallic acid, quercetin, chlorogenic acid, caffeic acid, catechin, and kaempferol have also been investigated for their potential health benefits.
These compounds, often found in plant-based foods and extracts, have demonstrated antioxidant, anti-inflammatory, and neuroprotective properties, similar to rutin.
When studying rutin and its related compounds, researchers can leverage various analytical techniques, such as DPPH assays and methanol-based extractions, to evaluate their biological activities and identify the most effective formulations and delivery methods.
By harnessing the insights provided by PubCompare.ai and exploring the synergistic effects of rutin and its related phytochemicals, researchers can enhance the quality and impact of their studies, ultimately contributing to the development of novel therapeutic strategies for a wide range of health conditions.