wtkj is the fitness variable of the k:th measurement of the wildtype for trait j, xij is the measure of strain i for trait j and r indicates the run. The measure for proliferation efficiency was inverted to maintain directionality between fitness components. Derived log2 relative proliferation variables were used for all statistical analysis, except where otherwise stated. The average coefficient of variation between replicates, considering all variables and environments, equalled 11.6%, (see
Succinic Acid
It is widely used in the chemical industry as a precursor for the synthesis of various compounds, including pharmaceuticals, polymers, and food additives.
Succinic acid can be produced through fermentation of renewable feedstocks, making it an attractive alternative to petrochemical-derived succinic acid.
Researhers continue to explore ways to optimize the production and applications of this versatile compound, which holds promise for a more sustainable future.
Most cited protocols related to «Succinic Acid»
wtkj is the fitness variable of the k:th measurement of the wildtype for trait j, xij is the measure of strain i for trait j and r indicates the run. The measure for proliferation efficiency was inverted to maintain directionality between fitness components. Derived log2 relative proliferation variables were used for all statistical analysis, except where otherwise stated. The average coefficient of variation between replicates, considering all variables and environments, equalled 11.6%, (see
Most recents protocols related to «Succinic Acid»
Example 6
Compound 3 was generated from the purification process of IL-2 mutein Ala-M1 polymer prodrug 5. During separation of compound 5 on a Capto MMC ImpRes resin the later eluting peak which contains 3 was collected. The collected fraction was diluted with 10 mM succinic acid, pH 5.0 to lower the conductivity to approx. 14 mS/cm and further purified on a Äkta system equipped with a HiScreen Capto Blue column using buffer A (20 mM sodium phosphate, pH 7.5), buffer B (20 mM sodium phosphate, 1 M NaCl, pH 7.5) and a gradient from 0 to 50% buffer B in 6 column volumes. The main peak was collected and concentrated using Amicon Ultra centrifugal device (3 kDa MWCO). The concentrated solution was buffer exchanged to 10 mM Hepes, 150 mM NaCl, 3 mM EDTA, 0.05% polysorbate 20, pH 7.4 by using an Äkta system and a HiPrep 26/10 column and the concentration was adjusted to 0.25 mg/mL to give compound 3.
Example 18
A solution of Varenicline free base (25.0 g) in methylene dichloride (125 mL) was stirred with the aqueous solution of succinic acid (16.77 g, 1.2 eq in 125 mL of water). The aqueous layer containing Varenicline succinate was stirred with methylene dichloride to remove the nitrosamine impurity by solvent extraction. Thereafter, follow the general procedure for the isolation of Varenicline base from the aqueous layer. Yield 15.6 g
Example 4
First setup of salt screening was carried out with Sulfuric Acid, Phosphoric Acid, Toluene Sulfonic Acid and Succinic Acid.
Cooling crystallisations with stoichiometric 1:1 (base:acid) combinations in 2-Propanol, Toluene and THF/Water (0.5:1; v:v) were started. Approx. 20 mg API was dissolved at high temperature and the acid was dosed in the respective amount to the solution. Solid acids were weighed and added as solid into the API solution and liquid acids were dissolved in the respective solvent and given by a pipette to the API solution. In no case a spontaneous salt precipitation after dosage of acid could be observed. Then the solution was cooled down to 5° C. with a slow cooling rate, e.g. 1 K/min (in experiments with 2-PrOH 3-fold cycles heating→cooling were run). In cases where no crystallisation occurred, the vials were placed for further days in the fridge. From Acetone evaporation crystallisations were carried out at RT.
From cooling crystallisations either no solid residues, amorphous solid residues or parent form A1 were obtained. From evaporation crystallisations in Acetone only amorphous residues were obtained. These residues were further treated by dissolving in Ethanol and carrying out of vapour diffusion experiments with Diethyl ether. In no case a crystalline residue was obtained.
Example 14
The elemental composition of the Succinic acid-1,4-Butanediol-Malic acid copolyester was analyzed by Proton Induced X-ray Emission (PIXE) at Elemental Analysis Inc. This method provides quantitative elemental composition of a material for inorganic elements sodium through uranium on the periodic table. The elements found are shown in Table 7. The polymer did not contain detectable heavy metals such as Tin, which is sometimes used in the manufacture of resorbable polymers such as poly-glycolide, polylactide and poly-glycolide-co-lactide. The following trace elements were detected: silicon 18.98 ppm, titanium 14.77 ppm, and zinc 5.967 ppm.
Example 9
A 3D printed mesh was prepared from succinic acid-1,4-butanediol-malic acid copolyester (Tepha lot 180333), with weight average molecular weight of 184 kDa, Tm=115° C., using melt extrusion deposition according to the following method. The mesh was printed using an ARBURG Free-Former machine consisting of a horizontal extruder feeding into a vertical ram extruder fitted with motion controlled needle plunger, 200 micron spinneret nozzle and a movable stage table. The extruder hopper was charged with 1½×3 mm sized polymer pellets with a moisture content of less than 2,000 ppm. The pellets were purged with dry nitrogen in the extruder hopper to maintain dryness. The temperature profile of the extruder was set between 45°-180° C., and the residence time of the polymer in the extrusion system was maintained at less than 15 min/cm. The conditions resulted in the formation of very high quality printed mesh as shown in
Top products related to «Succinic Acid»
More about "Succinic Acid"
This versatile compound is widely used in the chemical industry as a precursor for the synthesis of various compounds, including pharmaceuticals, polymers, and food additives.
Succinic acid can be produced through fermentation of renewable feedstocks, making it an attractive alternative to petrochemical-derived succinic acid.
Researchers continue to explore ways to optimize the production and applications of this versitale compound, which holds promise for a more sustainable future.
Aside from its role in the Krebs cycle, succinic acid is often compared to other dicarboxylic acids, such as citric acid, malic acid, fumaric acid, lactic acid, acetic acid, oxalic acid, and formic acid.
These acids share similarities in their chemical structures and metabolic functions, and researchers are constantly investigating the interplay between them and their applications.
Additionally, succinic acid is sometimes associated with methanol and tartaric acid, as these compounds can be used in the production or derivation of succinic acid.
The ongoing research and development in this field aim to unlock the full potential of succinic acid and its related compounds, contributing to a more environmentally-friendly and efficient chemical industry.