Histologic and immunohistochemical (IHC) staining were performed from blocks of neocortical epileptic tissues obtained during surgery (Table S1 ). Human drug-resistant epileptic brain (n = 3) were evaluated for the study. For histologic studies, five sections (30–35 μm) from the temporal cortex were collected and stained with 1% Cresyl violet (CV) for cytoarchitectural analysis (dyslamination, abnormal neuronal morphology, ectopias, and vascular malformations. Free floating sections were stained with Cyp3A4, GFAP, and vWF (Marchi et al., 2004 (link), 2006 (link)). We used: rabbit polyclonal anti-human Cyp3A4 (AB1254) (1:1,000, Chemi-Con, now Millipore, U.S.A.); mouse monoclonal anti-GFAP (G 3893, 1:100; Sigma, St Louis, MO, U.S.A.); mouse monoclonal anti-vWF (3H3126, 1:200; Santa Cruz, U.S.A.). Secondary antibodies: Texas red affinipure donkey anti-mouse IgG (1:100; Jackson Laboratories Inc., West Grove, PA, U.S.A.), and fluorescein isothiocyanate (FITC)–conjugated affinipure donkey anti-rabbit IgG (1:100; Jackson Laboratories Inc., West Grove, PA, U.S.A.). Autofluorescence was blocked with Sudan black B. Sections were analyzed by fluorescent microscopy.
CYP3A4 expression was quantified by measuring the green fluorescent signal in nine sections (n = 3 patients,Table S1 ). For quantification of CYP3A4 and GFAP expression, green and red fluorochromes were excited by a laser beam at 488 and 575 nm, respectively. All sections were scanned in the 1,600 × 1,200 pixel format in the x–y direction and the acquired images were processed using QCapture-Pro Software and Photoshop CS2. These measurements represent the “volume” of fluorescence (Marchi et al., 2006 (link)). Pixel number and intensity were measured using a green (or red) channel only and adjustment of the background signal to zero.
CYP3A4 expression was quantified by measuring the green fluorescent signal in nine sections (n = 3 patients,