Due to the disadvantages of biological experiments as time-consuming and high-cost, identification of ADME (absorption, distribution, metabolism and excretion) properties by in silico tools has now become an inevitable paradigm in pharmaceutical research. In this study, three ADME-related models, including the evaluation of oral bioavailability (OB), Caco-2 permeability and drug-likeness (DL), were employed to identify the potential bioactive compounds of ASC.
Oral bioavailability. OB prescreening is used to determine the fraction of the oral dose of bioactive compound which reaches systemic circulation in the TCM remedy. Here, a reliable in silico model OBioavail 1.159 (link) which integrates the metabolism (P450 3A4) and transport (P-glycoprotein) information was employed to calculate the OB values of herbal ingredients.
Caco-2 permeability. The Caco-2 cell monolayers are widely applied as standard permeability-screening assay for prediction of the compound’s intestinal absorption and fraction of the oral dose absorbed in humans60 (link). The Caco-2 cell permeation values of all molecules are calculated by in silico model using the VolSurf approach61 .
Drug-likeness evaluation. Drug-likeness is a qualitative profile used in drug design to evaluate whether a compound is chemically suitable for the drug, and how drug-like a molecule is with respect to parameters affecting its pharmacodynamic and pharmacokinetic profiles which ultimately impact its ADME properties62 (link). In order to identify drug-like compounds, we apply a database-dependent model using the Tanimoto coefficient to calculate the DL (see Eq. (1 )) of each compound in ASC.
x represents the molecular parameters of herbal ingredients, and y represents the average molecular properties in DrugBank database (available online:http://www.drugbank.ca ).
The OB, Caco-2 permeability and DL of all compounds are described in TableS9 .
In this work, the compounds of OB ≥ 30%, Caco-2 > −0. 4 and DL ≥ 0.18 were selected for subsequent research, others are excluded.
According to these indexes, several compounds were included: 1,2,5,6-tetrahydrotanshinone, 3-beta-Hydroxymethyllenetanshiquinone, 3α-hydroxytanshinone IIA, 4-methylenemiltirone, 537-15-5, 87112-49-0, 97399-70-7, 97411-46-6, C09092, Cryptotanshinone, Dan-shexinkum D, Danshenol A, Danshenol B, Danshenspiroketallactone, Dehydrotanshinone IIA, Deoxyneocryptotanshinone, Dihydrotanshinlactone, Dihydrotanshinone I, Epidanshenspiroketallactone, Formyltanshinone, Isocryptotanshinone, Isoimperatorin, Isotanshinone II, Luteolin, Manool, Methylenetanshinquinone, Microstegiol, Miltionone I, Miltionone II, Miltipolone, Miltirone II, Miltirone, MOL007155, MOL007140, MOL007036, MOL007048, MOL007050, MOL007070, Neocryptotanshinone II, Neocryptotanshinone, NSC122421, Poriferast-5-en-3beta-ol, Poriferasterol, Przewaquinone E, Przewaquinone F, Prolithospermic acid, Przewalskin A, Przewalskin B, Przewaquinone B, Przewaquinone C, Salvianolic acid G, Salvilenone I, Salvilenone, Salviolone, Sclareol, Sugiol, Tanshinaldehyde, Tanshindiol B, Tanshinone VI, Tanshinone IIA, α-Amyrin, 1,7-Dihydroxy-3,9-dimethoxy pterocarpene, 3,9-di-O-methylnissolin, 64474-51-7, 64997-52-0, 7-O-methylisomucronulatol, 73340-41-7, Bifendate, Calycosin, Formononetin, Hederagenin, Isodalbergin, Isorhamnetin, Jaranol, Kaempferol, Mairin, Quercetin.
Oral bioavailability. OB prescreening is used to determine the fraction of the oral dose of bioactive compound which reaches systemic circulation in the TCM remedy. Here, a reliable in silico model OBioavail 1.159 (link) which integrates the metabolism (P450 3A4) and transport (P-glycoprotein) information was employed to calculate the OB values of herbal ingredients.
Caco-2 permeability. The Caco-2 cell monolayers are widely applied as standard permeability-screening assay for prediction of the compound’s intestinal absorption and fraction of the oral dose absorbed in humans60 (link). The Caco-2 cell permeation values of all molecules are calculated by in silico model using the VolSurf approach61 .
Drug-likeness evaluation. Drug-likeness is a qualitative profile used in drug design to evaluate whether a compound is chemically suitable for the drug, and how drug-like a molecule is with respect to parameters affecting its pharmacodynamic and pharmacokinetic profiles which ultimately impact its ADME properties62 (link). In order to identify drug-like compounds, we apply a database-dependent model using the Tanimoto coefficient to calculate the DL (see Eq. (
x represents the molecular parameters of herbal ingredients, and y represents the average molecular properties in DrugBank database (available online:
The OB, Caco-2 permeability and DL of all compounds are described in Table
In this work, the compounds of OB ≥ 30%, Caco-2 > −0. 4 and DL ≥ 0.18 were selected for subsequent research, others are excluded.
According to these indexes, several compounds were included: 1,2,5,6-tetrahydrotanshinone, 3-beta-Hydroxymethyllenetanshiquinone, 3α-hydroxytanshinone IIA, 4-methylenemiltirone, 537-15-5, 87112-49-0, 97399-70-7, 97411-46-6, C09092, Cryptotanshinone, Dan-shexinkum D, Danshenol A, Danshenol B, Danshenspiroketallactone, Dehydrotanshinone IIA, Deoxyneocryptotanshinone, Dihydrotanshinlactone, Dihydrotanshinone I, Epidanshenspiroketallactone, Formyltanshinone, Isocryptotanshinone, Isoimperatorin, Isotanshinone II, Luteolin, Manool, Methylenetanshinquinone, Microstegiol, Miltionone I, Miltionone II, Miltipolone, Miltirone II, Miltirone, MOL007155, MOL007140, MOL007036, MOL007048, MOL007050, MOL007070, Neocryptotanshinone II, Neocryptotanshinone, NSC122421, Poriferast-5-en-3beta-ol, Poriferasterol, Przewaquinone E, Przewaquinone F, Prolithospermic acid, Przewalskin A, Przewalskin B, Przewaquinone B, Przewaquinone C, Salvianolic acid G, Salvilenone I, Salvilenone, Salviolone, Sclareol, Sugiol, Tanshinaldehyde, Tanshindiol B, Tanshinone VI, Tanshinone IIA, α-Amyrin, 1,7-Dihydroxy-3,9-dimethoxy pterocarpene, 3,9-di-O-methylnissolin, 64474-51-7, 64997-52-0, 7-O-methylisomucronulatol, 73340-41-7, Bifendate, Calycosin, Formononetin, Hederagenin, Isodalbergin, Isorhamnetin, Jaranol, Kaempferol, Mairin, Quercetin.
Full text: Click here