Thiophene
It is an important building block in organic chemistry, with wide applications in the development of pharmaceuticals, agrochemicals, and functional materials.
Thiophene and its derivatives exhibit diverse biological activities, including antimicrobial, anti-inflammatory, and anticancer properties.
Researchers studying thiophene compounds can leverrage the power of PubCompare.ai to optimize their research workflows, identifying the most effective protocols from literature, pre-prints, and patents using AI-driven comparisions to enhance reproducibility and accuaracy.
Most cited protocols related to «Thiophene»
2014 (link)). ANA-12, N2-(2-{[(2-oxoazepan-3-yl) amino]carbonyl}phenyl)benzo[b]thiophene-2-carboxamide (0.5mg/kg, i.p., Catalog number: BTB06525SC, Maybridge;
2011 (link)). The doses of 7,8-DHF and ANA-12 were also selected as previously reported (Ren et al., 2013 (link)
2014 (link); Cazorla et al., 2011 (link)).
Most recents protocols related to «Thiophene»
Example 15
Step 1:
Compound 1 (100 mg, 0.62 mmol), tert-butyl 2-amino-4-(thiophen-2-yl)phenylcarbamate (151 mg, 0.52 mmol), HOAt (141 mg, 1.04 mmol), EDCI (200 mg, 1.04 mmol), and Et3N (0.2 mL) were combined in THE (5 mL), and the reaction was stirred at rt overnight. After completed, the mixture was concentrated and the crude was carried over for next step (300 mg, crude).
Step 2:
The crude Compound 2 (300 mg, crude) and TFA (3 mL) were combined in DCM (6 mL). The reaction was stirred at rt for 2 h. The mixture was purified by Prep-HPLC (base method). White solid was afforded to obtain compound 018 (130 mg, 43%, 2 steps). LCMS: m/z=334.8 (M+H)+. 1H NMR (400 MHz, DMSO) δ 9.77 (s, 1H), 8.39 (d, J=33.4 Hz, 2H), 7.90 (d, J=7.6 Hz, 1H), 7.71 (s, 1H), 7.51 (s, 1H), 7.39-7.21 (m, 3H), 7.07 (dd, J=13.2, 9.0 Hz, 1H), 6.83 (d, J=8.2 Hz, 1H).
Example 12
Step 1:
Compound 1 (177 g, 1 mmol), iodomethane (426 mg, 3 mmol), and NaH (60%, 160 mg, 4 mmol) were combined in THE (5 mL). The reaction mixture was stirred at 60° C. for 3 h. The mixture was concentrated to get a residue The crude residue was dissolved in Py (5 mL). tert-Butyl 2-amino-4-(thiophen-2-yl)phenylcarbamate (290 mg, 1 mmol) and EDCI (382 mg, 2 mmol) were added and the reaction was stirred at rt overnight. The mixture was concentrated to get a residue, which was purified by silica gel to get compound 2 (246 mg, 50%, 2 steps) as yellow solid.
Step 2:
Compound 2 (246 mg, 0.5 mmol) and TFA (1 mL) were combined in DCM (2 mL), and the reaction was stirred at rt overnight. The mixture was concentrated to get compound 014 (156 mg, 80%) as yellow solid. LCMS: m/z=492 (M+H)+. 1H NMR (400 MHz, DMSO) δ 9.88 (s, 1H), 8.02 (d, J=8.0 Hz, 2H), 7.53 (s, 1H), 7.42 (t, J=7.5 Hz, 2H), 7.34 (d, J=3.4 Hz, 1H), 7.17 (d, J=8.2 Hz, 1H), 7.09 (d, J=4.3 Hz, 1H), 6.99 (d, J=8.3 Hz, 1H), 3.21 (s, 3H), 1.34 (s, 6H).
Example 7
Step 1:
Compound 1 (830 mg, 5 mmol) and cyclopropanecarboxylic acid (430 mg, 5 mmol) were combined in 4M HCl (20 mL). The reaction was refluxed overnight. After completed, the mixture was concentrated and purified by Prep-HPLC. White solid was afforded as Compound 2 (312 mg, 31%).
Step 2:
Compound 2 (100 mg, 0.50 mmol), tert-butyl 2-amino-4-(thiophen-2-yl)phenylcarbamate (144 mg, 0.50 mmol), and EDCI (288 mg, 1.50 mmol) were combined in Py (5 mL). The reaction was stirred at rt overnight. After completed, the mixture was concentrated and purified by column chromatography (DCM/MeOH=10/1). Compound 3 was isolated as a colorless oil (54 mg, 23%).
Step 3:
Compound 3 (54 mg, 0.11 mmol) was dissolved in DCM (2 ml). Then TFA (1 ml) was added. The mixture was stirred at rt for 2 h. The crude material was concentrated and washed with Et2O. Compound 009 was isolated as a white solid (30 mg, TFA salt). LCMS: m/z=375.0 (M+H)+. 1H NMR (400 MHz, DMSO) δ 9.96 (s, 1H), 8.26 (s, 1H), 8.07 (d, J=8.0 Hz, 1H), 7.76 (d, J=8.5 Hz, 1H), 7.50 (s, 1H), 7.35 (dd, J=8.5, 2.5 Hz, 2H), 7.28 (d, J=3.0 Hz, 1H), 7.07 (t, J=3.5 Hz, 1H), 6.88 (s, 1H), 2.42 (t, J=3.0 Hz, 1H), 1.37 (dd, J=2.5 Hz, 4H).
Example 22
Synthesis of 155-A.
A mixture of potassium (bromomethyl)trifluoroborate (1.00 g, 4.98 mmol) and pyrrolidine (371 mg, 5.23 mmol) in THF (10 mL) was stirred at 80° C. for 4 h. The solvent was removed in vacuo. The residue was dissolved in acetone and the solution filtered to remove KCl. The filtrate was concentrated in vacuo, dissolved in a minimal amount of hot acetone (10 mL), and precipitated by the dropwise addition of Et2O (5 mL). Additional Et2O (150 mL) was added to facilitate filtering to give 155-A (750 mg, 98%) as a white solid.
Synthesis of 155-B.
A mixture of 155-A (750 mg, 4.90 mmol), SM-A (500 mg, 4.67 mmol), Cs2CO3 (4.56 g, 14.0 mmol), Pd(OAc)2 (52 mg, 0.23 mmol) and XPhos (224 mg, 0.47 mmol) in THF/H2O (20 mL/2 mL) was stirred 80° C. for 12 h under Ar. The mixture was cooled to room temperature and diluted with H2O (50 mL). The mixture was extracted with EtOAc (20 mL×3). The combined organics washed with brine (20 mL×3), dried over anhydrous Na2SO4 and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE:EtOAc=8:1˜3:1) to give 155-B (700 mg, 47%) as a yellow solid.
Synthesis of 155-C.
To a solution of 155-B (350 mg, 1.15 mmol) in DCM (8 mL) was added TFA (4 mL) and stirred at room temperature for 1 h. when LCMS showed the reaction was finished. The solvent was removed in vacuo to give 155-C as a crude product and used to next step directly.
Synthesis of 155-D.
A mixture of 143-C (200 mg, 0.42 mmol) and 155-C (crude product from last step) in acetonitrile (5 mL) was stirred at 50° C. for 30 min. Then Na2CO3 (356 mg, 3.36 mmol) was added into above mixture and stirred at 50° C. for 3 h. After the reaction was completed according to LCMS, the mixture was cooled to room temperature. The Na2CO3 was removed by filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜50:1) to give 155-D (180 mg, 93%) as a yellow solid.
Synthesis of 155.
A mixture of 155-D (180 mg, 0.39 mmol) and Pd/C (180 mg) in MeOH (5 mL) was stirred at room temperature for 1 h under H2 atmosphere. Pd/C was removed by filtration through the Celite. The filtrate was concentrated and the residue was purified by Pre-TLC (DCM:MeOH=8:1) to give 155 (125 mg, 74%) as a yellow solid
Compound 144 was synthesized in a similar manner using thiophen-2-ylboronic acid variant of 155. Compound 144. 80 mg, 60%, a yellow solid.
Example 9
Step 1:
Compound 3 (231 mg, 1 mmol), amine tert-butyl 2-amino-4-(thiophen-2 yl)phenylcarbamate (290 mg, 1 mmol), and EDCI (382 mg, 2 mmol) were combined in Py (5 mL). The reaction was stirred at rt overnight. The mixture was concentrated to get a residue, which was purified by silica gel to get compound 4 (302 mg, 60%) as yellow solid.
Step 2:
Compound 4 (252 mg, 0.5 mmol) and TFA (1 mL) were combined in DCM (2 mL). The reaction was stirred at rt for 1 h. The mixture was concentrated to get a compound 011 (161, 80%) as yellow solid. LCMS: m/z=404 (M+H)+. 1H NMR (400 MHz, DMSO) δ 9.66 (s, 1H), 8.00 (m, 1H), 7.93 (s, 1H), 7.46 (s, 1H), 7.36 (m, 1H), 7.31 (m, 1H), 7.30 (m 2H), 7.06 (m, 1H), 6.81 (m, 1H), 5.14 (s, 2H). 3.68 (m, 2H), 3.62 (m, 2H), 1.17 (m, 1H), 0.48 (m, 2H), 0.36 (m, 2H)
Top products related to «Thiophene»
More about "Thiophene"
With its five-membered ring structure featuring a sulfur atom, thiophene and its derivatives exhibit a diverse range of biological activities, including antimicrobial, anti-inflammatory, and anticancer properties.
Researchers studying this important class of compounds can leverage the power of PubCompare.ai to optimize their research workflows.
By utilizing PubCompare.ai, researchers can identify the most effective protocols and methods from a vast array of literature, pre-prints, and patents.
Through AI-driven comparisons, they can enhance the reproducibility and accuracy of their thiophene studies, ensuring that their work is built upon the most robust and reliable protocols.
Beyond thiophene, researchers may also explore related solvents and reagents, such as methanol, DMSO, acetonitrile, ethanol, N,N-dimethylformamide, chloroform, N-bromosuccinimide, toluene, and ferrocene, which are commonly used in thiophene-based reactions and applications.
By leveraging the insights and capabilities of PubCompare.ai, researchers can optimize their entire workflow, from experimental design to data analysis, and deliver more impactful results in their thiophene-focused studies.
Remember, with the power of PubCompare.ai at your fingertips, you can navigate the vast landscape of thiophene research with confidence, avoiding human-like tpyos and ensuring that your work stands out for its reproducibility and accuracy.