Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Example 22
To a four-necked flask (1 L volume) equipped with stirring blades, a thermometer, a dropping funnel and a condenser tube, 500 mL of toluene, 30.6 g (0.11 mol) of 4,4′-(propane-2,2-diyl)bis(isocyanate-benzene), and 63.1 mg of p-methoxyphenol were added and dissolved. Next, 14.3 g (0.11 mol) of 2-hydroxyethyl methacrylate was weighed in a beaker, 150 mL of toluene was added, and the mixture was stirred thoroughly and transferred to a dropping funnel. The four-necked flask was immersed in an oil bath heated to 80° C., and 2-hydroxyethyl methacrylate was added dropwise with stirring. After completion of the dropwise addition, the reaction was continued while maintaining the temperature of an oil bath for 24 hours, leading to aging. After completion of the aging, the four-necked flask was removed from the oil bath and the reaction product was returned to room temperature, and then HPLC and FT-IR measurements were performed. Analysis conditions of the HPLC measurement are as follows: a column of ZORBAX-ODS, acetonitrile/distilled water of 7/3, a flow rate of 0.5 mL/min, a multi-scanning UV detector, an RI detector and an MS detector. The FT-IR measurement was performed by an ATR method. As a result of the HPLC measurement, the raw materials 4,4′-(propane-2,2-diyl)bis(isocyanate-benzene) and 2-hydroxyethyl methacrylate disappeared and a new peak of 2-(((4-(2-(4-isocyanate-phenyl)propane-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate (molecular weight 408.45) was confirmed. As a result of FT-IR measurement, a decrease in isocyanate absorption intensity at 2280-2250 cm−1 and a disappearance of hydroxy group absorption near 3300 cm−1 were confirmed, and a new absorption attributed to urethane group at 1250 cm−1 was confirmed. Next, to a toluene solution containing 40.8 g (0.10 mol) of the precursor compound synthesized in the above procedure, 22.2 g (0.10 mol) of 3-(triethoxysilyl)propan-1-ol was added dropwise with stirring. The reaction was performed with the immersion in an oil bath heated to 80° C. in the same way as in the first step. After completion of the dropwise addition, the reaction was continued for 24 hours, leading to aging. After completion of the aging, HPLC and FT-IR measurements were performed. As a result of the HPLC measurement, the peaks of the raw materials 2-(((4-(2-(4-isocyanate-phenyl)propane-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate and 3-(triethoxysilyl)propan-1-ol disappeared and 2-(((4-(2-(4-(((3-(triethoxysilyl)propoxy)carbonyl)amino)phenyl)propan-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate (molecular weight 630.81) was confirmed. As a result of FT-IR measurement, a disappearance of isocyanate absorption at 2280-2250 cm−1 and a disappearance of hydroxy group absorption near 3300 cm−1 were confirmed. The chemical structure formula of the compound synthesized in this synthetic example are described below.
Example 1
This example describes an exemplary nanostructure (i.e. nanocomposite tecton) and formation of a material using the nanostructure.
A nanocomposite tecton consists of a nanoparticle grafted with polymer chains that terminate in functional groups capable of supramolecular binding, where supramolecular interactions between polymers grafted to different particles enable programmable bonding that drives particle assembly (
Once synthesized, nanocomposite tectons were functionalized with either diaminopyridine-polystyrene or thymine-polystyrene were readily dispersed in common organic solvents such as tetrahydrofuran, chloroform, toluene, and N,N′-dimethylformamide with a typical plasmonic resonance extinction peak at 530-540 nm (
A key feature of the nanocomposite tectons is that the sizes of their particle and polymer components can be easily modified independent of the supramolecular binding group's molecular structure. However, because this assembly process is driven via the collective interaction of multiple diaminopyridine and thymine-terminated polymer chains, alterations that affect the absolute number and relative density of diaminopyridine or thymine groups on the nanocomposite tecton surface impact the net thermodynamic stability of the assemblies. In other words, while all constructs should be thermally reversible, the temperature range over which particle assembly and disassembly occurs should be affected by these variables. To better understand how differences in nanocomposite tecton composition impact the assembly process, nanostuctures were synthesized using different nanoparticle core diameters (10-40 nm) and polymer spacer molecular weights (3.7-11.0 kDa), and allowed to fully assemble at room temperature (˜22° C.) (
From these data, two clear trends can be observed. First, when holding polymer molecular weight constant, Tm increases with increasing particle size (
All nanocomposite tectons possess similar polymer grafting densities (i.e. equivalent areal density of polymer chains at the inorganic nanoparticle surface,
Conversely, for a fixed inorganic particle diameter (and thus constant number of polymer chains per particle), increasing polymer length decreases the areal density of diaminopyridine and thymine groups at the nanocomposite tecton periphery due to the “splaying” of polymers as they extend off of the particle surface, thereby decreasing Tm in a manner consistent with the trend in
Importantly, because the nanocomposite tecton assembly process is based on dynamic, reversible supramolecular binding, it should be possible to drive the system to an ordered equilibrium state where the maximum number of binding events can occur. The particle cores and polymer ligands are polydisperse (
To test this hypothesis, multiple sets of assembled nanocomposite tectons were thermally annealed at a temperature just below their Tm, allowing particles to reorganize via a series of binding and unbinding events until they reached the thermodynamically most stable conformation. The resulting structures were analyzed with small angle X-ray scattering, revealing the formation of highly ordered mesoscale structures where the nanoparticles were arranged in body-centered cubic superlattices (
Example 151
To a solution of compound 662 (0.270 g, 0.177 mmol, 1.0 eq.) in DCM (6.0 mL) at r.t. was added TFA (2.0 mL) and stirred for 4 h. The mixture was diluted with anhydrous toluene and concentrated, this operation was repeated for three times to give yellow oil, which was purified on prep-HPLC (C18 column, mobile phase A: water, mobile phase B: acetonitrile, from 10% of B to 80% of B in 60 min). The fractions were pooled and lyophilized to give the title compound (172 mg, 83% yield). ESI m/z calcd for C57H90N11O13S [M+H]+: 1168.6, found: 1168.6.
Example 456
(S)-2-(4-(6-((2,5-difluoro-4-methylbenzyl)oxy)pyridin-2-yl)-2,5-difluorobenzyl)-1-(4,4-dimethyltetrahydrofuran-3-yl)-1H-benzo[d]imidazole-6-carboxylic acid was prepared in a manner as described in Procedure 27, starting with Intermediates I-1219 and 1-(bromomethyl)-2,5-difluoro-4-methyl-benzene. 1H NMR (400 MHz, Methanol-d4) δ 8.90 (s, 1H), 8.18 (dd, J=8.6, 1.4 Hz, 1H), 7.93 (dd, J=10.9, 6.3 Hz, 1H), 7.89-7.73 (m, 2H), 7.58 (dd, J=7.5, 1.5 Hz, 1H), 7.39 (dd, J=11.2, 6.0 Hz, 1H), 7.20 (dd, J=9.7, 6.0 Hz, 1H), 7.04 (dd, J=10.1, 6.1 Hz, 1H), 6.92 (d, J=8.3 Hz, 1H), 5.50 (s, 2H), 5.14 (d, J=6.6 Hz, 1H), 4.81-4.60 (m, 3H), 4.53 (dd, J=11.7, 6.7 Hz, 1H), 4.00 (d, J=8.9 Hz, 1H), 3.84 (d, J=8.9 Hz, 1H), 2.26 (d, J=1.9 Hz, 3H), 1.41 (s, 3H), 0.76 (s, 3H). ES/MS m/z: 620.3 (M+H+).
Example 158
To a solution of compound 671 (0.20 g, 0.349 mmol, 1.0 eq) in DCM (6.0 mL) at r.t. was added TFA (2.0 mL) and the reaction was stirred for 2 h, then diluted with anhydrous toluene and concentrated, this operation was repeated for three times to give the title compound as a yellow oil (165 mg, theoretical yield). ESI m/z calcd for C24H36N5O5 [M+H]+: 474.3, found: 474.3.