The experimental composites were composed of Bis-phenol A diglycidyl dimethacrylate (Bis-GMA), urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) at a 50:30:20 mass ratio. All monomers were purchased from Esstech (Essington, PA, USA). Photoinitiators were added to the monomers as follows: 0.2 wt.% of dl-camphoroquinone (Polysciences Inc., Warrington, PA, USA), 0.8 wt.% of a tertiary amine (EDMAB – ethyl 4-dimethylaminobenzoate; Avocado, Heysham, England), and 0.2 wt.% inhibitor (BHT – 2,6-di-tert-butyl-4-methylphenol; Sigma–Aldrich, St. Louis, MO, USA).
Six thiourethane oligomers were synthesized in solution in the presence of catalytic amounts of triethylamine. Two multi-functional thiols – pentaerythritol tetra-3-mercaptopropionate (PETMP) or trimethylol-tris-3-mercaptopropionate (TMP) – were combined with three di-functional isocyanates – 1,6-hexanediol-diissocyante (HDDI) or 1,3-bis(1-isocyanato-1-methylethyl) benzene (BDI) (aromatic) or 1-isocyanato-4-[(4-isocyanatocyclohexyl) methyl] cyclohexane (DHDI) in 60 ml of methylene chloride. In addition, 1 mol of 3-(triethoxysilyl)propyl isocyanate was also added to each of the six combinations described above – this is the source of trimethoxy silane to be used for the subsequent silanization step. The reaction was catalyzed by triethylamine. The isocyanate:thiol mol ratio was kept at 1:2.5 (with thiol in excess) to avoid macro-gelation of the oligomer during reaction, according to the Flory–Stockmayer theory
21 , leaving pendant thiols and trimethoxy silanes. Oligomers were purified by precipitation in hexanes and rotoevaporation, and then characterized by mid-IR and NMR spectroscopy
6 (link). The disappearance of the isocyanate mid-IR peak at 2270 cm
−1 and the appearance of NMR resonance signals at 3.70 ppm were used as evidence for completion of isocyanate reaction and thiourethane bond formation, respectively
36 .
For the silanization procedures, thiourethane oligomers were combined with 65 ml of an ethanol: distilled water solution (80:20 vol%), previously acidified by the addition of glacial acetic acid (pH = 4.5). Thiourethane was added at 2 wt%, in relation to the solution mass. Five grams of neat barium silicate glass filler (average size = 1.0 μm; Kavo Kerr Corporation, Orange, CA) was added to the solution, kept under magnetic stirring for 24 hours, filtered, and dried for 4 days in an oven at 37 °C.
The TU fillers were introduced at 50 wt% to the monomer matrix with a centrifugal mixer (DAC 150 Speed Mixer, Flacktek, Landrum, SC, USA) operated for 2 min at 1800 rpm. All procedures were carried out under yellow light.
Control groups were prepared with a commercially available unsilanized (UNS) and methacrylate-silanized (SIL-MA) barium glass filler particles (average size = 1.0 μm; Kerr Corporation, Orange, CA). All photocuring procedures were carried out using a mercury arc lamp (EXFO Acticure 4000 UV Cure; Mississauga, Ontario, Canada) filtered at 320–500 nm (light guide diameter = 5 mm). In order to verify the achieved functionalization and its efficiency, the different filler particles were analyzed by thermogravimetric analysis (TGA) over a temperature range of 50 °C to 850 °C at 10 °C/minute.
Fugolin A.P., Sundfeld D., Ferracane J.L, & Pfeifer C.S. (2019). Toughening of Dental Composites with Thiourethane-Modified Filler Interfaces. Scientific Reports, 9, 2286.