Trifluoroacetic Acid
It is a versatile reagent employed in the synthesis of pharmaceuticals, peptides, and other organic molecules.
TFA plays a key role in the deprotection of amino acid side chains, the cleavage of peptides from solid supports, and the purification of biomolecules.
Researchers can optimize their TFA-related projects by using PubCompare.ai, an AI-driven tool that compares experimental protocols from literature, preprints, and patents to identify the most effective and reproducible procedures.
This platform offers powerful analysis tools to streamline research and uncover the best products for your needs, enhancing reproducibility and saving time in your Trifluoroacetic Acid studies.
Most cited protocols related to «Trifluoroacetic Acid»
Pull-downs can be performed manually on a hand magnet. In our laboratory, pull-downs were performed on the automated liquid-handling platform (Freedom EVO 200; Tecan) in a fully automated manner.
Peptides were separated on line to the mass spectrometer by using an easy nano-LC system (Proxeon Biosystems). 5 µl samples were loaded with a constant flow of 700 nl/min onto a 15-cm fused silica emitter with an inner diameter of 75 µm (IntelliFlow; Proxeon Biosystems) packed in house with RP ReproSil-Pur C18-AQ 3 µm resin (Dr. Maisch). Peptides were eluted with a segmented gradient of 2–60% (for trypsin digest) and 5–60% (for EndoLysC digest) solvent B over 105 min with a constant flow of 250 nl/min. The nano-LC system was coupled to a mass spectrometer (LTQ-Orbitrap; Thermo Fisher Scientific) via a nanoscale LC interface (Proxeon Biosystems). The spray voltage was set to 2.1 kV, and the temperature of the heated capillary was set to 180°C.
Survey full-scan MS spectra (m/z = 300–1,650) were acquired in the Orbitrap with a resolution of 60,000 at the theoretical m/z = 400 after accumulation of 1,000,000 ions in the Orbitrap. The most intense ions (up to 10) from the preview survey scan delivered by the Orbitrap were sequenced by centromere identifier (collision energy 35%) in the LTQ after accumulation of 5,000 ions concurrently to full scan acquisition in the Orbitrap (TOP10 peptide sequencing). Maximal filling times were 1,000 ms for the full scans and 150 ms for the MS/MS. Precursor ion charge state screening was enabled, and all unassigned charge states as well as singly charged peptides were rejected. The dynamic exclusion list was restricted to a maximum of 500 entries with a maximum retention period of 90 s and a relative mass window of 5 ppm. Orbitrap measurements were performed with the lock mass option enabled for survey scans to improve mass accuracy (Olsen et al., 2005 (link)).
Most recents protocols related to «Trifluoroacetic Acid»
Example 12
There has been a growing interest in the fabrication of nanofibers derived from natural polymers due to their ability to mimic the structure and function of extracellular matrix. Electrospinning is a simple technique to obtain nano-micro fibers with customized fiber topology and composition (
The current study aimed to improve and maintain nano-fibrous and porous structure of the electrospun membranes by introducing a new post electrospinning chemical treatment. Membrane thickness was tripled in this research in order to increase the general tearing strength. Scanning electron micrograph (SEM) examination (
Chitosan membranes treated by TEA/tboc showed better nano-fiber morphology characteristics than membranes neutralized by saturated Na2CO3 solution before and after being soaked in PBS. Retention of the nanofibrous structure for guided tissue regeneration applications may be of benefit for enabling nutrient exchange between soft gingival tissue and bone compartments and for mimicking the natural nanofibrillar components of the extracellular matrix during regeneration.
Example 229
To a stirred solution of N-[5-[4-[(3-aminooxetan-3-yl)methoxy]phenyl]-1-tetrahydropyran-2-yl-1,2,4-triazol-3-yl]-1-tetrahydropyran-2-yl-indazol-5-amine (60 mg, 0.11 mmol) and N-[5-[4-[[3-(ethylamino)oxetan-3-yl]methoxy]phenyl]-1-tetrahydropyran-2-yl-1,2,4-triazol-3-yl]-1-tetrahydropyran-2-yl-indazol-5-amine (59 mg, 0.10 mmol) in dry DCM (3 mL) at r.t. under nitrogen was added trifluoroacetic acid (157.5 μL, 2.06 mmol) and the reaction stirred at 25° C. overnight. The mixture was purified by ion-exchange chromatography (SCX, eluting with 1 M NH3 in MeOH) and preparative HPLC (20-50% MeCN in H2O) giving N-[5-[4-[[3-(ethylamino)oxetan-3-yl]methoxy]phenyl]-4H-1,2,4-triazol-3-yl]-1H-indazol-5-amine (10.9 mg, 0.02 mmol, 20% yield) as a white solid and N-[5-[4-[(3-aminooxetan-3-yl]methoxy]phenyl]-4H-1,2,4-triazol-3-yl]-1H-indazol-5-amine (19 mg, 0.04 mmol, 44% yield) as an off-white solid. Example 228: LC-MS (ES+, Method E): 4.25 min, m/z 378.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 13.22 (s, 1H), 12.81 (s, 1H), 9.16 (s, 1H), 8.10 (s, 1H), 7.94 (d, J=2.5 Hz, 2H), 7.92 (s, 1H), 7.42 (d, J=1.5 Hz, 2H), 7.13 (d, J=9.0 Hz, 2H), 4.48 (d, J=6.0 Hz, 2H), 4.39 (d, J=6.0 Hz, 2H), 4.13 (s, 2H), 2.27 (s, 2H). Example 229: LC-MS (ES+, Method E): 4.44 min, m/z 405.9 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 12.80 (s, 2H), 9.17 (s, 1H), 8.11 (t, J=1.5 Hz, 1H), 7.94 (s, 2H), 7.91 (d, J=2.5 Hz, 2H), 7.43-7.41 (m, 2H), 7.13 (d, J=9.0 Hz, 2H), 4.52 (d, J=6.0 Hz, 2H), 4.43 (d, J=6.0 Hz, 2H), 4.21 (s, 2H), 2.66-2.59 (m, 2H), 1.04 (t, J=7.0 Hz, 3H).
Example 227
To a stirred solution of N-(1-acetylazetidin-3-yl)-2-[2-methoxy-4-[2-tetrahydropyran-2-yl-5-[(1-tetrahydropyran-2-ylindazol-5-yl)amino]-1,2,4-triazol-3-yl)phenoxy]acetamide (28 mg, 0.04 mmol) in DCM (3 mL) at room temp under nitrogen was added trifluoroacetic acid (66 μL, 0.87 mmol) and the reaction stirred at 25° C. overnight. The solvents were removed under reduced pressure and the residue purified by preparative HPLC (30-80% MeCN in H2O) giving N-(1-acetylazetidin-3-yl)-2-[2-methoxy-4-[2-tetrahydropyran-2-yl-5-[(1-tetrahydropyran-2-ylindazol-5-yl)amino]-1,2,4-triazol-3-yl]phenoxy]acetamide (28 mg, 0.04 mmol) as an off-white solid. LC-MS (ES+, Method E): 5.02 min, m/z 477.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6, 353K): δ 13.25 (s, 1H), 12.55 (s, 1H), 8.70 (s, 1H), 8.37 (d, J=6.6 Hz, 1H), 8.06-7.95 (m, 1H), 7.91 (s, 1H), 7.62 (d, J=2.0 Hz, 1H), 7.54 (dd, J=8.3, 2.0 Hz, 1H), 7.45 (d, J=8.0 Hz, 2H), 7.09 (d, J=8.4 Hz, 1H), 4.59-4.49 (m, 3H), 4.41-3.94 (m, 3H), 3.91 (s, 3H), 3.84 (s, 1H), 1.76 (s, 3H).
Example 232
A solution of N-isopropyl-2-[2-methoxy-4-[2-methyl-5-[(1-tetrahydropyran-2-ylindazol-5-yl)amino]-1,2,4-triazol-3-yl]phenoxy]acetamide (185 mg, 0.36 mmol) and trifluoroacetic acid (0.41 mL, 5.34 mmol) in DCM (5 mL) was stirred for 16 h. The reaction mixture was concentrated and purified. by flash chromatography on C-18 silica, eluting with 5-50% MeOH in water to give formic acid; 2-[4-[5-(1H-indazol-5-ylamino)-2-methyl-1,2,4-triazol-3-yl]-2-methoxy-phenoxy]-N-isopropyl-acetamide (60 mg, 0.12 mmol, 35% yield) as white amorphous solid. UPLC-MS (ES+, Method B): 3.04 min, m/z 436.4 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 12.78 (s, 1H), 9.14 (s, 1H), 8.08 (s, 1H), 7.94 (s, 1H), 7.83 (d, J=7.8 Hz, 1H), 7.40-7.35 (m, 3H), 7.31 (dd, J=8.3, 1.9 Hz, 1H), 7.05 (d, J=8.4 Hz, 1H), 4.54 (s, 2H), 3.97-3.89 (m, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 1.10 (d, J=6.6 Hz, 6H).
Example 3
Combined tert-butyl 2-[1-[2-[3-(1-cyano-1-methyl-ethyl)phenyl]-6-methyl-4-oxo-chromen-8-yl]ethylamino]benzoate (110.0 mg, 210.5 μmol) and TFA (3.0 g, 2.0 mL, 26 mmol) in DCM (2 mL) and heated at 40° C. for 3 hours. Concentrated the reaction and purified using a C-18 column, eluted with 10-90% acetonitrile in water (0.1% TFA additive), to give the product (45.0 mg, 46%). MS ES+ m/z 467 [M+H]+.