The largest database of trusted experimental protocols
> Chemicals & Drugs > Organic Chemical > Trifluoroacetic Acid

Trifluoroacetic Acid

Trifluoroacetic acid (TFA) is a highly corrosive organic compound used in various chemical reactions and analytical techniques.
It is a versatile reagent employed in the synthesis of pharmaceuticals, peptides, and other organic molecules.
TFA plays a key role in the deprotection of amino acid side chains, the cleavage of peptides from solid supports, and the purification of biomolecules.
Researchers can optimize their TFA-related projects by using PubCompare.ai, an AI-driven tool that compares experimental protocols from literature, preprints, and patents to identify the most effective and reproducible procedures.
This platform offers powerful analysis tools to streamline research and uncover the best products for your needs, enhancing reproducibility and saving time in your Trifluoroacetic Acid studies.

Most cited protocols related to «Trifluoroacetic Acid»

To investigate the COX-2 isozyme templated synthesis, each 5-azido-pyraozle (5, 14, 27, and 31, 1 µl of 3 mM DMSO solution) and alkyne (6a6f, 15a15e, 1 µl of 20 mM DMSO solution) were pairwise mixed with human recombinant COX-2 isozyme (95 µl COX-2) in 1 µl of 1 M Tris-HCl, pH 8.0. The each reaction mixture was vortexed for 1 min, and then incubated at room temperature (For temperature dependency of COX-2 enzyme activity, see Supplementary Fig. 16). Final reagent concentrations were as follows: COX-2 (7 µM), azide (30 µM) alkyne (200 µM). After 3, 6, 9, 12, 15, 18, 21, and 24 h each sample was analyzed in triplicate by injecting (10 µl) into the LC/MS instrument with SIM mode (Water’s Micromass ZQTM 4000 LC−MS instrument, operating in the ESI-positive mode, equipped with a Water’s 2795 separation module). Calibration curve for hit compounds 18 and 21 is given in Supplementary Fig. 17. Summaries of all LC/MS data are presented in Supplementary Tables 37. Separations were performed in triplicate using a Kromasil 100-5-C18 (100 μm pore size, 5 μm particle size) reverse phase column (2.1 mm diameter × 50 mm length), preceded by a Kromasil 100-5-C18 2.1 × guard column. Separations were effected using a gradient MeCN/H2O (0.05% trifluoroacetic acid (TFA))/MeOH in 40/30/30, v/v/v over 15 min at flow rate 0.25 ml min−1. Operating parameters were as follows: capillary voltage = 3.5 kV; cone voltage = 20 V; source temperature = 140 °C; sesolvation temperature = 250 °C; cone nitrogen gas flow = 100 l h−1; desolvation nitrogen gas flow = 550 l h−1. The identities of triazole products (retention time of 6.73 min for 18), (retention time of 4.56 min for 21), and the internal standard (retention time of 10.89 min) were confirmed by molecular weight and comparison of the retention times of the authentic products formed from copper catalyzed reactions. Control experiments in the presence of BSA (1 mg mL−1) instead of the COX-2 enzyme as well as in the absence of COX-2 enzyme and the known COX-2 selective inhibitor (1 µl of celecoxib, 100 µM final concentration) were run as described above. For multicomponent in situ click chemistry reactions, each azide (5, 14, 27, and 31, 1 µL of 3 mM DMSO solution) and eleven alkynes (6a6f and 15a15e, 1 µl of 20 mM DMSO solution) were thoroughly mixed together in the presence of COX-2 isozyme (95 µl COX-2) in 1 µl of 1 M Tris-HCl, pH 8.0 and incubated at room temperature. After 24 h each sample was analyzed in triplicate by injecting (10 µl) into the LC/MS instrument by following the procedure described above, except the ions are monitored for all possible masses. The cyclo addition products were identified by their molecular weights and by comparison of the retention times of authentic products prepared through Cu-catalyzed reactions. Control experiments using BSA (1 mg ml−1) in place of COX-2 isozyme and in the absence of COX-2 isozyme were run consecutively.
Full text: Click here
Publication 2017
Alkynes Anabolism Azides Capillaries Celecoxib compound 18 Copper Cyclooxygenase 2 Inhibitors enzyme activity Enzymes Homo sapiens Ions Isoenzymes Nitrogen PTGS2 protein, human Retention (Psychology) Retinal Cone Sulfoxide, Dimethyl Triazoles Trifluoroacetic Acid Tromethamine
Unlabeled proteins, highly deuterated peptides and cytochrome c were analyzed using the UPLC system and conventional HPLC. In both LC-systems, labeled samples (50 µLs) were injected at a flow rate of 100 µL/min into a 2.1 mm × 50 mm stainless steel column that was packed with pepsin immobilized on POROS-20AL beads [prepared as described in8 (link), 9 (link)]. Under these conditions, the digestion time was approximately 30 seconds.
In the HPLC experiments, a Shimadzu HPLC (LC-10ADvp) system was used. Peptic peptides eluting from the online pepsin digestion step were trapped and desalted on a 1 mm × 8 mm C-18 peptide trap (Michrom Biosciences) and desalted for 3 min. The trap was placed inline with the analytical column, a Zorbax C-18, 3.5 µm 300 Å, 1.0 mm × 50 mm column (Agilent Technologies), and eluted into the mass spectrometer with a gradient of 15 to 30% acetonitrile in 6 min at a flow rate of 40 µL/min. HPLC mobile phases contained 0.05 % trifluoroacetic acid. The C-18 peptide trap and analytical column, as well as the injection and switching valves were placed in an ice-bath to maintain the required 0 °C. The mobile phases were kept in a separate ice-bath and then flowed through pre-cooling stainless steel loops (located before the gradient mixing tee) in the main ice-bath to ensure that they were cool prior to meeting deuterated sample. The pepsin column was held above the ice bath at approximately 15 °C9 (link).
In the UPLC experiments, peptic peptides from online pepsin digestion were trapped and desalted on a VanGuard Pre-Column (2.1 mm × 5 mm, ACQUITY UPLC BEH C18, 1.7 µm) for 3 min. The trap was placed in-line with an ACQUITY UPLC BEH C18 1.7 µm 1.0 × 100 mm column (Waters Corp.) and eluted into the mass spectrometer with a 8–40 % gradient of acetonitrile over 6 min at a flow rate of 40 µL/min. The volume of the system from the mixer to the head of the analytical column was ~ 30 µL which includes ~ 8 µL volume of the trap column in line. All mobile phases for the UPLC system contained 0.1 % formic acid.
Mass spectral analyses were carried out on a Waters LCT classic or QToF Premier. The LCT was used for initial validation of the cooled UPLC module chromatography and not for any analyses of deuterium incorporation. LCT classic instrument settings were: 3.2kV cone and 40 V capillary voltages. The LCT source and desolvation temperatures were 150 and 175 °C, respectively with a desolvation gas flow of 1024 L/hour and a cone gas flow of 99 L/hour. LCT mass spectra were acquired using a 0.50 sec scan time and 0.1 sec interscan delay time. QTof instrument settings were: 3.5kV cone and 40 V capillary voltages. The QTof source and desolvation temperatures were 80 and 175 °C, respectively with a desolvation gas flow of 600 L/hour. QTof mass spectra were acquired using a 0.450 sec scan time and 0.050 sec interscan time. All QTof data were collected in ESI (+) and V mode. Deuteration levels were calculated by subtracting the centroid of the isotopic distribution for peptide ions of undeuterated sample from the centroid of the isotopic distribution for peptide ions from the deuterium labeled sample. Deuterium levels were not corrected for back-exchange and are therefore reported as relative 1 (link).
Publication 2008
acetonitrile ARID1A protein, human Bath C-Peptide Capillaries Chromatography Cytochromes c Deuterium Digestion formic acid Head High-Performance Liquid Chromatographies Ions Isotopes Mass Spectrometry Neoplasm Metastasis Pepsin A Peptides Proteins Radionuclide Imaging Retinal Cone Stainless Steel Steel Thrombin Receptor Activating Peptides Trifluoroacetic Acid
Cell pellets were thawed on ice and incubated for 30 min at room temperature in 1 ml lysis buffer containing 150 mM NaCl, 50 mM Tris, pH 7.5, 5% glycerol, 1% IGEPAL-CA-630, 1 mM MgCl2, 200 U benzonase (Merck), and EDTA-free complete protease inhibitor cocktail (Roche). When studying phospho-dependent interactions, phosphatase inhibitors (Roche) were added as well. Lysates were cleared by centrifugation at 4,000 g and 4°C for 15 min to remove remaining membrane and DNA, and the supernatant was incubated with 50 µl magnetic beads coupled to monoclonal mouse anti-GFP antibody (Miltenyi Biotec) for 15 min on ice. Because of the extremely small size of the beads (50 nm), they are nonsedimenting and show fast reaction kinetics. Magnetic columns were equilibrated using 250 µl lysis buffer. Cell lysates were added to the column after incubation and washed three times with 800 µl ice-cold wash buffer I containing 150 mM NaCl, 50 mM Tris, pH 7.5, 5% glycerol, and 0.05% IGEPAL-CA-630, and two times with 500 µl of wash buffer II containing 150 mM NaCl, 50 mM Tris, pH 7.5, and 5% glycerol. Purified proteins were predigested by adding 25 µl 2 M urea in 50 mM Tris, pH 7.5, 1 mM DTT, and 150 ng EndoLysC (Wako Chemicals USA, Inc.) for SILAC experiments or 150 ng trypsin (Promega) for label-free experiments. After in-column digestion for 30 min at room temperature, proteins were eluted by adding two times 50 µl 2 M urea in 50 mM Tris, pH 7.5, and 5 mM chloroacetamide. In SILAC experiments, heavy and light eluates of transgenic cell line and the corresponding WT cell line were combined immediately after elution from the columns. Proteins were digested overnight at room temperature. The digestion was stopped by adding 1 µl trifluoroacetic acid, and peptides of each experiment were split and purified on two C18 Stage Tips and stored at 4°C (Rappsilber et al., 2007 (link)).
Pull-downs can be performed manually on a hand magnet. In our laboratory, pull-downs were performed on the automated liquid-handling platform (Freedom EVO 200; Tecan) in a fully automated manner.
Publication 2010
Animals, Transgenic Antibodies, Anti-Idiotypic Benzonase Buffers Cell Lines Cells Centrifugation chloroacetamide Cold Temperature Digestion Edetic Acid Glycerin Igepal CA-630 inhibitors Kinetics Lanugo Magnesium Chloride Mice, Laboratory Pellets, Drug Peptides Phosphoric Monoester Hydrolases Promega Protease Inhibitors Proteins Sodium Chloride Tissue, Membrane TNFSF14 protein, human Trifluoroacetic Acid Tromethamine Trypsin Urea
Peptides were eluted from C18 Stage Tips with 2 × 20 µl solvent B (80% acetonitrile and 0.5% acetic acid). Acetonitrile was evaporated, and thereby, the volume reduced to 5 µl in a speed vacuum centrifuge. 10 µl solvent containing 2% acetonitrile and 0.1% trifluoroacetic acid was added.
Peptides were separated on line to the mass spectrometer by using an easy nano-LC system (Proxeon Biosystems). 5 µl samples were loaded with a constant flow of 700 nl/min onto a 15-cm fused silica emitter with an inner diameter of 75 µm (IntelliFlow; Proxeon Biosystems) packed in house with RP ReproSil-Pur C18-AQ 3 µm resin (Dr. Maisch). Peptides were eluted with a segmented gradient of 2–60% (for trypsin digest) and 5–60% (for EndoLysC digest) solvent B over 105 min with a constant flow of 250 nl/min. The nano-LC system was coupled to a mass spectrometer (LTQ-Orbitrap; Thermo Fisher Scientific) via a nanoscale LC interface (Proxeon Biosystems). The spray voltage was set to 2.1 kV, and the temperature of the heated capillary was set to 180°C.
Survey full-scan MS spectra (m/z = 300–1,650) were acquired in the Orbitrap with a resolution of 60,000 at the theoretical m/z = 400 after accumulation of 1,000,000 ions in the Orbitrap. The most intense ions (up to 10) from the preview survey scan delivered by the Orbitrap were sequenced by centromere identifier (collision energy 35%) in the LTQ after accumulation of 5,000 ions concurrently to full scan acquisition in the Orbitrap (TOP10 peptide sequencing). Maximal filling times were 1,000 ms for the full scans and 150 ms for the MS/MS. Precursor ion charge state screening was enabled, and all unassigned charge states as well as singly charged peptides were rejected. The dynamic exclusion list was restricted to a maximum of 500 entries with a maximum retention period of 90 s and a relative mass window of 5 ppm. Orbitrap measurements were performed with the lock mass option enabled for survey scans to improve mass accuracy (Olsen et al., 2005 (link)).
Publication 2010
Acetic Acid acetonitrile Capillaries Centromere Peptides Radionuclide Imaging Reprosil Resins, Plant Retention (Psychology) Silicon Dioxide Solvents Tandem Mass Spectrometry Trifluoroacetic Acid Trypsin Vacuum
HPLC solvents including acetonitrile and water were obtained from Burdick and Jackson (Muskegon, MI). Reagents for protein chemistry including iodoacetamide, DTT, ammonium bicarbonate, formic acid, trifluoroacetic acid, acetic acid, dichloroacetic acid (DCA), dodecyl-maltoside, urea, as well as the protein standards bovine hemoglobin, BSA, rabbit phosphorylase B, and yeast enolase were purchased from Sigma-Aldrich. All protein standards were >95% purity. Tris(2-carboxyethyl)phosphine was purchased from Thermo (Rockford, IL), and HLB Oasis SPE cartridges were purchased from Waters (Milford, MA). Dialysis cassettes (MWCO 3 kDa) were obtained from Pierce, and proteomics grade trypsin was from Promega (Madison WI). Trypsin-predigested β-galactosidase (a quality control standard) was purchased from AB SCIEX (Foster City, CA).
Publication 2012
Acetic Acid acetonitrile ammonium bicarbonate beta-Galactosidase Bos taurus CREB3L1 protein, human Dialysis Dichloroacetic Acid dodecyl maltoside Enolase formic acid Hemoglobin High-Performance Liquid Chromatographies Iodoacetamide phosphine Phosphorylase b Promega Proteins Rabbits Saccharomyces cerevisiae Solvents Trifluoroacetic Acid Tromethamine Trypsin Urea

Most recents protocols related to «Trifluoroacetic Acid»

Example 12

There has been a growing interest in the fabrication of nanofibers derived from natural polymers due to their ability to mimic the structure and function of extracellular matrix. Electrospinning is a simple technique to obtain nano-micro fibers with customized fiber topology and composition (FIGS. 33A and 33B). The chitosan electrospun nanofibers have recently been extensively studied due to the favorable properties of chitosan such as controllable biodegradation, good biocompatibility and high mechanical strength. Currently, chitosan can be electrospun from a solution of chitosan dissolved in either trifluoroacetic acid (TFA) or acetic acid (HAc). However, processes to remove residual acid and acid salts from the electrospun material generally resulted in a swelling of fibers and deterioration of the nano-fibrous structure. Crosslinking in combination with neutralization methods also had not been effective at preventing loss of nano-fibrous structure.

The current study aimed to improve and maintain nano-fibrous and porous structure of the electrospun membranes by introducing a new post electrospinning chemical treatment. Membrane thickness was tripled in this research in order to increase the general tearing strength. Scanning electron micrograph (SEM) examination (FIG. 33C) and transmission electron micrograph (TEM) examination (FIG. 33D) showed Fiber diameters of the triethanolamine/N-tert-butoxycarbonyl (TEA/t-BoC) treated membranes ranged from 40 nm to 130 nm while fiber diameters were not able to be determined for the Na2CO3 group. Membranes treated by TEA/tboc (FIG. 34A) exhibited more nano-scale fibrous structure than membranes treated by saturated Na2CO3 (FIGS. 35B-35D, as seen demonstrated in scanning electron micrographs. After immersion in PBS for 24 hours, membranes treated by TEA/tboc exhibited less than 30% swelling (FIG. 34B) and retained their nanofibrous structure, compared with membranes treated by Na2CO3 (FIGS. 35B-35D) or compared with the non-treated chitosan membrane (FIG. 35A). After soaking the TEA/tBoc treated membranes in water overnight, membranes still kept the porous structure. In both, the before and after water status, fibers kept diameters in the nanometer range (FIG. 35C). TEA/tBoC modified nanofiber membranes also well preserved their fibrous structure over 4 weeks in physiological solution compared with Na2CO3 treated membranes (FIG. 35D).

Chitosan membranes treated by TEA/tboc showed better nano-fiber morphology characteristics than membranes neutralized by saturated Na2CO3 solution before and after being soaked in PBS. Retention of the nanofibrous structure for guided tissue regeneration applications may be of benefit for enabling nutrient exchange between soft gingival tissue and bone compartments and for mimicking the natural nanofibrillar components of the extracellular matrix during regeneration.

Full text: Click here
Patent 2024
Acetic Acid Acids Bones Chitosan Electrons Environmental Biodegradation Extracellular Matrix Fibrosis Gingiva Guided Tissue Regeneration Hydrochloric acid Nutrients physiology Polymers Regeneration Retention (Psychology) Submersion TERT protein, human Tissue, Membrane Tissues Transmission, Communicable Disease triethanolamine Trifluoroacetic Acid Vision

Example 229

[Figure (not displayed)]

To a stirred solution of N-[5-[4-[(3-aminooxetan-3-yl)methoxy]phenyl]-1-tetrahydropyran-2-yl-1,2,4-triazol-3-yl]-1-tetrahydropyran-2-yl-indazol-5-amine (60 mg, 0.11 mmol) and N-[5-[4-[[3-(ethylamino)oxetan-3-yl]methoxy]phenyl]-1-tetrahydropyran-2-yl-1,2,4-triazol-3-yl]-1-tetrahydropyran-2-yl-indazol-5-amine (59 mg, 0.10 mmol) in dry DCM (3 mL) at r.t. under nitrogen was added trifluoroacetic acid (157.5 μL, 2.06 mmol) and the reaction stirred at 25° C. overnight. The mixture was purified by ion-exchange chromatography (SCX, eluting with 1 M NH3 in MeOH) and preparative HPLC (20-50% MeCN in H2O) giving N-[5-[4-[[3-(ethylamino)oxetan-3-yl]methoxy]phenyl]-4H-1,2,4-triazol-3-yl]-1H-indazol-5-amine (10.9 mg, 0.02 mmol, 20% yield) as a white solid and N-[5-[4-[(3-aminooxetan-3-yl]methoxy]phenyl]-4H-1,2,4-triazol-3-yl]-1H-indazol-5-amine (19 mg, 0.04 mmol, 44% yield) as an off-white solid. Example 228: LC-MS (ES+, Method E): 4.25 min, m/z 378.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 13.22 (s, 1H), 12.81 (s, 1H), 9.16 (s, 1H), 8.10 (s, 1H), 7.94 (d, J=2.5 Hz, 2H), 7.92 (s, 1H), 7.42 (d, J=1.5 Hz, 2H), 7.13 (d, J=9.0 Hz, 2H), 4.48 (d, J=6.0 Hz, 2H), 4.39 (d, J=6.0 Hz, 2H), 4.13 (s, 2H), 2.27 (s, 2H). Example 229: LC-MS (ES+, Method E): 4.44 min, m/z 405.9 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 12.80 (s, 2H), 9.17 (s, 1H), 8.11 (t, J=1.5 Hz, 1H), 7.94 (s, 2H), 7.91 (d, J=2.5 Hz, 2H), 7.43-7.41 (m, 2H), 7.13 (d, J=9.0 Hz, 2H), 4.52 (d, J=6.0 Hz, 2H), 4.43 (d, J=6.0 Hz, 2H), 4.21 (s, 2H), 2.66-2.59 (m, 2H), 1.04 (t, J=7.0 Hz, 3H).

Full text: Click here
Patent 2024
1H NMR Amines High-Performance Liquid Chromatographies Indazoles Ion-Exchange Chromatographies Nitrogen Sulfoxide, Dimethyl Trifluoroacetic Acid
Not available on PMC !

Example 227

[Figure (not displayed)]

To a stirred solution of N-(1-acetylazetidin-3-yl)-2-[2-methoxy-4-[2-tetrahydropyran-2-yl-5-[(1-tetrahydropyran-2-ylindazol-5-yl)amino]-1,2,4-triazol-3-yl)phenoxy]acetamide (28 mg, 0.04 mmol) in DCM (3 mL) at room temp under nitrogen was added trifluoroacetic acid (66 μL, 0.87 mmol) and the reaction stirred at 25° C. overnight. The solvents were removed under reduced pressure and the residue purified by preparative HPLC (30-80% MeCN in H2O) giving N-(1-acetylazetidin-3-yl)-2-[2-methoxy-4-[2-tetrahydropyran-2-yl-5-[(1-tetrahydropyran-2-ylindazol-5-yl)amino]-1,2,4-triazol-3-yl]phenoxy]acetamide (28 mg, 0.04 mmol) as an off-white solid. LC-MS (ES+, Method E): 5.02 min, m/z 477.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6, 353K): δ 13.25 (s, 1H), 12.55 (s, 1H), 8.70 (s, 1H), 8.37 (d, J=6.6 Hz, 1H), 8.06-7.95 (m, 1H), 7.91 (s, 1H), 7.62 (d, J=2.0 Hz, 1H), 7.54 (dd, J=8.3, 2.0 Hz, 1H), 7.45 (d, J=8.0 Hz, 2H), 7.09 (d, J=8.4 Hz, 1H), 4.59-4.49 (m, 3H), 4.41-3.94 (m, 3H), 3.91 (s, 3H), 3.84 (s, 1H), 1.76 (s, 3H).

Full text: Click here
Patent 2024
1H NMR acetamide High-Performance Liquid Chromatographies Indazoles Nitrogen Pressure Solvents Sulfoxide, Dimethyl Trifluoroacetic Acid
Not available on PMC !

Example 232

[Figure (not displayed)]

A solution of N-isopropyl-2-[2-methoxy-4-[2-methyl-5-[(1-tetrahydropyran-2-ylindazol-5-yl)amino]-1,2,4-triazol-3-yl]phenoxy]acetamide (185 mg, 0.36 mmol) and trifluoroacetic acid (0.41 mL, 5.34 mmol) in DCM (5 mL) was stirred for 16 h. The reaction mixture was concentrated and purified. by flash chromatography on C-18 silica, eluting with 5-50% MeOH in water to give formic acid; 2-[4-[5-(1H-indazol-5-ylamino)-2-methyl-1,2,4-triazol-3-yl]-2-methoxy-phenoxy]-N-isopropyl-acetamide (60 mg, 0.12 mmol, 35% yield) as white amorphous solid. UPLC-MS (ES+, Method B): 3.04 min, m/z 436.4 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 12.78 (s, 1H), 9.14 (s, 1H), 8.08 (s, 1H), 7.94 (s, 1H), 7.83 (d, J=7.8 Hz, 1H), 7.40-7.35 (m, 3H), 7.31 (dd, J=8.3, 1.9 Hz, 1H), 7.05 (d, J=8.4 Hz, 1H), 4.54 (s, 2H), 3.97-3.89 (m, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 1.10 (d, J=6.6 Hz, 6H).

Full text: Click here
Patent 2024
1H NMR acetamide Chromatography formic acid Indazoles Silicon Dioxide Sulfoxide, Dimethyl Trifluoroacetic Acid

Example 3

[Figure (not displayed)]

Combined tert-butyl 2-[1-[2-[3-(1-cyano-1-methyl-ethyl)phenyl]-6-methyl-4-oxo-chromen-8-yl]ethylamino]benzoate (110.0 mg, 210.5 μmol) and TFA (3.0 g, 2.0 mL, 26 mmol) in DCM (2 mL) and heated at 40° C. for 3 hours. Concentrated the reaction and purified using a C-18 column, eluted with 10-90% acetonitrile in water (0.1% TFA additive), to give the product (45.0 mg, 46%). MS ES+ m/z 467 [M+H]+.

Full text: Click here
Patent 2024
acetonitrile Benzoate Benzoic Acid myeloma protein M 467 TERT protein, human Trifluoroacetic Acid

Top products related to «Trifluoroacetic Acid»

Sourced in United States, Germany, United Kingdom, France, Spain, Italy, Australia, China, India, Sao Tome and Principe, Poland, Canada, Switzerland, Macao, Belgium, Netherlands, Czechia, Japan, Austria, Brazil, Denmark, Ireland
Trifluoroacetic acid is a colorless, corrosive liquid commonly used as a reagent in organic synthesis and analytical chemistry. It has the chemical formula CF3COOH.
Sourced in United States, Germany, United Kingdom, France, China, Italy, Switzerland, Sao Tome and Principe, Spain, Australia, Poland, Macao, Belgium, Sweden, Hungary, Netherlands, Ireland
Trifluoroacetic acid (TFA) is a colorless, corrosive liquid used in various laboratory applications. It is a strong organic acid with a chemical formula of CF3COOH. TFA is commonly utilized as a reagent or solvent in various chemical processes, including protein and peptide synthesis, sample preparation, and chromatographic techniques.
Sourced in United States, Germany, United Kingdom, China, Japan, France, Switzerland, Sweden, Italy, Netherlands, Spain, Canada, Brazil, Australia, Macao
Trypsin is a serine protease enzyme that is commonly used in cell culture and molecular biology applications. It functions by cleaving peptide bonds at the carboxyl side of arginine and lysine residues, which facilitates the dissociation of adherent cells from cell culture surfaces and the digestion of proteins.
Sourced in Germany, United States, Italy, India, China, United Kingdom, France, Poland, Spain, Switzerland, Australia, Canada, Brazil, Sao Tome and Principe, Ireland, Belgium, Macao, Japan, Singapore, Mexico, Austria, Czechia, Bulgaria, Hungary, Egypt, Denmark, Chile, Malaysia, Israel, Croatia, Portugal, New Zealand, Romania, Norway, Sweden, Indonesia
Acetonitrile is a colorless, volatile, flammable liquid. It is a commonly used solvent in various analytical and chemical applications, including liquid chromatography, gas chromatography, and other laboratory procedures. Acetonitrile is known for its high polarity and ability to dissolve a wide range of organic compounds.
Sourced in Germany, United States, Italy, United Kingdom, France, Spain, China, Poland, India, Switzerland, Sao Tome and Principe, Belgium, Australia, Canada, Ireland, Macao, Hungary, Czechia, Netherlands, Portugal, Brazil, Singapore, Austria, Mexico, Chile, Sweden, Bulgaria, Denmark, Malaysia, Norway, New Zealand, Japan, Romania, Finland, Indonesia
Formic acid is a colorless, pungent-smelling liquid chemical compound. It is the simplest carboxylic acid, with the chemical formula HCOOH. Formic acid is widely used in various industrial and laboratory applications.
Sourced in United States, Germany, United Kingdom, China, Morocco, Canada, France, Japan, Italy
C18 ZipTips are a type of pipette tip used in sample preparation for mass spectrometry and other analytical techniques. They are coated with a C18 reversed-phase material, which can selectively retain and concentrate analytes of interest from complex biological samples.
Sourced in United States, Germany, United Kingdom, Sao Tome and Principe, Italy, France, Macao, China, Canada, Australia, Switzerland, Spain
Iodoacetamide is a chemical compound commonly used in biochemistry and molecular biology laboratories. It is a reactive compound that selectively modifies cysteine residues in proteins, thereby allowing for the study of protein structure and function. Iodoacetamide is often used in sample preparation procedures for mass spectrometry and other analytical techniques.
Sourced in Germany, United States, Italy, India, United Kingdom, China, France, Poland, Spain, Switzerland, Australia, Canada, Sao Tome and Principe, Brazil, Ireland, Japan, Belgium, Portugal, Singapore, Macao, Malaysia, Czechia, Mexico, Indonesia, Chile, Denmark, Sweden, Bulgaria, Netherlands, Finland, Hungary, Austria, Israel, Norway, Egypt, Argentina, Greece, Kenya, Thailand, Pakistan
Methanol is a clear, colorless, and flammable liquid that is widely used in various industrial and laboratory applications. It serves as a solvent, fuel, and chemical intermediate. Methanol has a simple chemical formula of CH3OH and a boiling point of 64.7°C. It is a versatile compound that is widely used in the production of other chemicals, as well as in the fuel industry.
Sourced in United States, Germany, United Kingdom, Italy, Sao Tome and Principe, France, China, Switzerland, Macao, Spain, Australia, Canada, Belgium, Sweden, Brazil, Austria, Israel, Japan, New Zealand, Poland, Bulgaria
Dithiothreitol (DTT) is a reducing agent commonly used in biochemical and molecular biology applications. It is a small, water-soluble compound that helps maintain reducing conditions and prevent oxidation of sulfhydryl groups in proteins and other biomolecules.
Sourced in United States, United Kingdom, Belgium, Germany, France
Trifluoroacetic acid is a commonly used reagent in organic chemistry. It is a colorless, fuming liquid with a pungent odor. The primary function of trifluoroacetic acid is as a strong acid and deprotecting agent in various chemical reactions and processes.

More about "Trifluoroacetic Acid"

Trifluoacetc acid, TFA, Trypsin, Acetontirle, Formic acid, C18 ZipTips, Iodoacetamide, Methanol, Dithiothreitol