The largest database of trusted experimental protocols
> Chemicals & Drugs > Organic Chemical > Trimethoxysilane

Trimethoxysilane

Trimethoxysilane, a silicon-based compound with the chemical formula CH₃Si(OCH₃)₃, is a versatile precursor used in various applications such as surface modification, polymer synthesis, and thin-film deposition.
It has a wide range of industrial and research applications, including the production of silicone materials, adhesives, and coatings.
The optimization of Trimethoxysilane research is crucial for enhancing reproducibility and accuracy in related studies.
PubCompare.ai offers a platform to help researchers locate the most reliable protocols from literature, preprints, and patents, utilizing AI-driven comparisons to identify the best products and procedures for their work.
This streamlines the research process and ensures the most accurate results, supporting the advancement of Trimethoxysilane-based technologies.

Most cited protocols related to «Trimethoxysilane»

To prepare the gel layers, the components of the HRI gel pre-polymers, parts A and B of QGel 920 and parts A and B of QGel 903 (both by Quantum Silicones LLC, Richmond VA; refractive index of 1.49 when cured), were mixed in various proportions (Table 1) and coated onto 25 mm no. 1 round cover glasses using a home-built spin-coater rotating at 1920 rpm. Each cover glass was baked at 100°C for 2 hr to create a layer of cured gel on it with a thickness, µm. After baking, the gels on the cover glasses were treated with 3-aminopropyl trimethoxysilane for 5 minutes and incubated for 10 minutes at room temperature under a suspension of 40 nm carboxylated far-red fluorescent beads (excitation/emission 690/720 nm, by Invitrogen, Carlsbad, CA) in a 100 µg/ml solution of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in water to covalently link beads to the gel surface. This technique made it possible to have all beads in one plane corresponding to the surface of the gel. Therefore, the beads could be imaged under wide-field (epi-fluorescence illumination) with minimal background and their displacements reflected the deformation of the very top of the substrate. To promote cell adhesion, fibronectin (FN) was covalently linked to the gel surface by incubation in 50 µg/ml of FN with 100 µg/ml EDC in PBS, pH 7.4 for 30 min at room temperature.
The elastic modulus (Young's modulus), E, of the gels was evaluated by applying a known hydrodynamic shear stress, τ, to the gel surface using a custom-built microfluidic device, measuring the resulting bead displacement, , calculating the shear of the gel, , and applying the equation , where ν is the Poisson ratio, as explained in detail elsewhere [26] . Because the Poisson ratio of silicone gels is nearly equal to 0.5 [27] , the equation was reduced to . To measure the gel thickness, , a small amount of the 40 nm far-red fluorescent beads was deposited on the cover glass surface before it was coated with the gel pre-polymer. The fluorescence microscope was first focused on beads on the glass surface and then on those on the gel surface and the difference in the readings of the nosepiece (z-axis) knob was recorded (with a correction for the mismatch between the refractive indices of the gel and immersion liquid), resulting in ∼1 µm accuracy. The shear, , was found to be a zero-crossing linear function of τ for of up to at least 3 µm (greater than produced by HUVECs; see below) for all gels, with no sign of plastic deformations (see also [26] ), thus validating the use of the equation , which applies to linear materials. Furthermore, measurements of vs. at different constant values of τ resulted in linear dependencies, indicating homogeneity of mechanical properties of the gel layers.
Full text: Click here
Publication 2011
Carbodiimides Cell Adhesion Epistropheus Eyeglasses Fluorescence FN1 protein, human Hydrodynamics Light Microchip Analytical Devices Microscopy, Fluorescence Polymers Silicone Gels Silicones Submersion trimethoxysilane

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2018

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2008
We cleaned 18-mm #1.5 coverslips (Warner Instruments) with either 1% hydrofluoric acid (HF) for 5 min or 1% Hellmanex II (Fisher) for 3 h, followed by distilled water and 100% ethanol. Cleaned coverslips were then flamed and placed in sterile 35-mm tissue culture dishes. For PALM, cells were grown on fibronectin coated (2 μg ml−1 in PBS (pH 7.4); Sigma) cover-slips and transiently transfected 48 h after plating with Fugene 6 (Roche). Approximately 24 h after transfection, cells were washed twice with PBS, fixed with 4% paraformaldehyde, 0.2% glutaraldehyde (Electron Microscopy Sciences) in PBS for 35 min at room temperature (25 °C) (or for 15 min at 4 °C followed by 30 min at room temperature for cells incubated at 4 °C). Quenching was done with filter-sterilized 10 mg ml−1 BSA in PBS for 5 min, and cells were finally washed four times with PBS. In all cases, fixation was preformed just before the imaging. Cells expressing VSVG were incubated at 32 °C at least 8 h before fixation. To ensure high density of TfR-PAGFP on the plasma membrane, cells were incubated with 100 μM deferoxamine mesylate salt (DFO, Sigma) for 18 h after transfection. Coverslips were incubated with 1:4,000 diluted Tetraspec beads (Invitrogen) in PBS for 10 min that served as fiducial markers.
For confocal microscopy, cells were grown on coverslips (18-mm, #1.5) and transfected 24 h before imaging.
To generate GPMVs, COS-7 cells transiently expressed with mEGFP-tagged proteins were labeled with 200 μg ml−1 Rh-DOPE (Avanti Polar Lipids) dissolved in ethanol for 5 min, washed twice with GPMV buffer (2 mM CaCl2, 10 mM Hepes and 150 mM NaCl, pH 7.4), and incubated with freshly prepared GPMV active reagent consisting of 2 mM N-ethyl maleimide (Sigma) in GPMV buffer for 1 h at 37 °C with shaking (60 cycles min−1). GPMVs were then gently decanted into a tube and allowed to sit undisturbed on ice for 30 min to allow the larger GPMVs to sediment. Finally, GPMVs were collected from the bottom 20% of the total volume of the tube and imaged at 25 °C.
To covalently immobilize on coverslips, clean coverslips were first treated with 5% (wt/vol) 3-aminopropyl trimethoxysilane (APTMS) in acetone for 15 min at room temperature, washed with acetone and PBS in succession, and then incubated with 0.25% (wt/vol) glutaraldehyde in PBS for 30 min. PAGFP in PBS was centrifuged (100,000g in TLA 45 rotor for 2 h) to minimize any potential aggregation before the experiment. Next, functionalized coverslips were incubated with a combination of 10 nM PAGFP and 5 μM BSA in PBS for 30 min at room temperature in a humid chamber. Coverslips were extensively washed after the incubation and then imaged in PBS.
Publication 2011
N-type [100]-orientation silicon wafers with 500 nm or 1.9 μm of silicon oxide were purchased from Addison Engineering. Wafers with 500 nm or greater silicon oxide were selected to maximize interference contrast (Supplementary Fig. 12). Wafers were cut into approximately 1 cm × 1 cm chips by scoring with a diamond-tip pen. They were cleaned by sonicating in acetone for 20 minutes, rinsing with water, sonicating for 20 minutes in 1 M potassium hydroxide, and rinsing with water. The wafers were then chemically activated to enable conjugation of extracellular matrix (ECM) proteins for cell adhesion. The wafers were incubated for one hour in 0.5% (3-aminopropyl)trimethoxysilane (APS) in water, sonicated five times in water for five minutes to remove excess APS, incubated for one hour in 0.5% gluteraldeyde in phosphate buffered saline (PBS; pH = 7.4), sonicated five times in water for five minutes, and dried under nitrogen gas. The wafers were sterilized under a UV lamp and incubated overnight at 4 °C in 10 μg ml−1 human plasma fibronectin (Millipore).
Publication 2012
Acetone Cell Adhesion Diamond DNA Chips Extracellular Matrix Proteins FN1 protein, human Homo sapiens Nitrogen Phosphates Plasma potassium hydroxide Saline Solution Silicon Silicon Dioxide trimethoxysilane

Most recents protocols related to «Trimethoxysilane»

SCNPs (2 g) and 60 mL 3-chloropropyl trimethoxysilane were placed in 50 mL dry toluene. The mixture was stirred for 48 h at 60 °C under N2 gas. The CPTMS/SCNPs was separated by magnetic separation and washed with toluene and ethanol and dried under vacuum at 80 °C.
Publication 2024

Example 2

Into a 2 liter glass reactor equipped with an overhead mechanical stirrer and a heating mantle is added 100 g of BLONDIEE® Metallic Super Gold pigment, product code N-2002S (available from Creation of Quality Value Company Ltd.) suspended in 900 mL of deionized water and heated to 40° C. with vigorous stirring. The suspension is adjusted to pH of 3.3 using 2.5% hydrochloric acid and the temperature is raised to 75° C.

Subsequently, 3.0 g of (3-glycidyloxypropyl)trimethoxysilane (available from Millipore Sigma) is added over the course of 10 minutes and the pH is kept constant using the 2.5% hydrochloric acid solution. At the end of the addition, stirring is continued at 75° C. for 2 hours during which the silane hydrolyzes and the resulting silanols associate with the inorganic pigment surface.

Subsequently, the system is adjusted to a pH of 8.0 while maintaining the reaction temperature of 75° C. using 2.5% sodium hydroxide solution very slowly over the course of 1 hour during which time the condensation reaction occurs and the resulting siloxane bonds to the pigment surface leaving the unreacted epoxy end group free for subsequent functionalization. Stirring is continued at 75° C. for an additional 1 hour to complete the reaction and the pH falls to 7.0. The product is filtered off using vacuum filtration, washed with deionized water and dried at 140° C. for approximately 16 hours.

Subsequently, 50 g of polyamide resin such as nylon 6,6 is melt mixed with 10 g of the above epoxide surface functionalized mica pigment Blondiee® Metallic Super Gold melt mixed in the Haake mixer at 150° C. to 200° C. for 20 to 30 minutes to facilitate the crosslinking reaction of the epoxide with the amino group of the polyamide resin. The resulting pigment-pendent polyamide resin concentrate is discharged from the Haake mixer, cooled and grounded into a fine powder for subsequent incorporation into pigmented polyamide micron particles.

Using 1.5 g of BLONDIEE® Metallic Super Gold pigment-pendent crosslinked polyamide resin onto the pigment surface and 28.5 g of nylon 6,6 is melt mixed with 150 g of polydimethylsiloxane (PDMS) of 30,000 specific viscosity by hot melt emulsification in a Haake mixer fitted with a 300 ml mixing vessel. The mixer is heated to 230° C. and mixed at 200 rpm for 20 minutes.

Then, the mixture is discharged from the Haake onto a cold surface to provide rapid quench cooling. The resultant mixture is then filtered through a 90 mm WHATMAN® #1 paper filter (available from SigmaAldrich) to separate the PP-polyamides particles from the carrier fluid. The particles are washed three times with 1000 mL of ethyl acetate. The particles are then allowed to air dry overnight in an aluminum pan in a fume hood. Optionally, the dried particles can be screened through a 150-μm sieve. The PP-polyamide particles are then characterized for size with a Malvern MASTERSIZER™ 3000 and morphology with SEM micrographs. The D50 (μm) is predicted to be around 65 μm with a span of about 1.20.

Full text: Click here
Patent 2024

Example 1

Into a 2 liter glass reactor equipped with an overhead mechanical stirrer and a heating mantle is added 100 g of IRIODIN® 100 Silver Pearl pigment (available from E. Merck KGaA, Darmstadt) suspended in 900 mL of deionized water and heated to 40° C. with vigorous stirring. The suspension is adjusted to pH of 3.3 using 2.5% hydrochloric acid and the temperature is raised to 75° C.

Subsequently, 3.0 g of (3-glycidyloxypropyl)trimethoxysilane (available from Millipore Sigma) is added over the course of 10 minutes and the pH is kept constant using the 2.5% hydrochloric acid solution. At the end of the addition, stirring is continued at 75° C. for 2 hours during which the silane hydrolyzes and the resulting silanols associate with the inorganic pigment surface.

Subsequently, the system is adjusted to a pH of 8.0 while maintaining the reaction temperature of 75° C. using 2.5% sodium hydroxide solution very slowly over the course of 1 hour during which time the condensation reaction occurs and the resulting siloxane bonds to the pigment surface leaving the unreacted epoxy end group free for subsequent functionalization. Stirring is continued at 75° C. for an additional 1 hour to complete the reaction and the pH falls to 7.0. The product is filtered off using vacuum filtration, washed with deionized water and dried at 140° C. for approximately 16 hours.

Subsequently, 100 g of polyamide resin, such as nylon 6,6, is dissolved in N-methyl-2-pyrrolidone (NMP) with vigorous agitation. To this mixture is added 10 g of the epoxide functionalized IRIODIN® 100 Silver Pearl pigment from above and the reaction mixture with continuous agitation is increased to 150° C. for 2 hours to facilitate the curing reaction of the amino functional groups of the polyamide resin with the pendent glycidyloxypropyl (epoxide) group coating the surface of IRIODIN® 100 Silver Pearl pigment. After the polyamide resin has cured and coated the suspended IRIODIN® 100 Silver Pearl pigment the solvent is removed by filtering the particles using vacuum filtration and the material is thoroughly dried in a vacuum oven for 24 hours. Then a portion of this mixture is mixed with non-pigment-pendant polyamide in the Haake reaction with PDMS to form the particles.

Using 2.5 g of IRIODIN® 100 Silver Pearl pigment-pendent crosslinked by polyamide resin onto the pigment surface and 27.5 g of nylon 6,6 is melt mixed with 150 g of polydimethylsiloxane (PDMS) of 60,000 specific viscosity by hot melt emulsification in a Haake mixer fitted with a 300 ml mixing vessel. The mixer is heated to 230° C. and mixed at 200 rpm for 20 minutes. Then, the mixture is discharged from the Haake onto a cold surface to provide rapid quench cooling. The resultant mixture is then filtered through a 90 mm WHATMAN® #1 paper filter (available from SigmaAldrich) to separate the PP-polyamide particles from the carrier fluid. The PP-polyamide particles are washed three times with 1000 mL of ethyl acetate. The PP-polyamide particles are then allowed to air dry overnight in an aluminum pan in a fume hood. Optionally, the dried PP-polyamide particles can be screened through a 150-μm sieve. The PP-polyamide particles are then characterized for size with a Malvern MASTERSIZER™ 3000 and morphology with SEM micrographs. The D50 (μm) is predicted to be around 50 μm with a span of about 0.85.

Full text: Click here
Patent 2024

Example 3

Into a 2 liter glass reactor equipped with an overhead mechanical stirrer and a heating mantle is added 100 g of REFLEX® 100 Sparkle Violet R-706E pigment (available from Creation of Quality Value Company Ltd.) suspended in 900 mL of deionized water and heated to 40° C. with vigorous stirring. The suspension is adjusted to pH of 3.3 using 2.5% hydrochloric acid and the temperature is raised to 75° C.

Subsequently, 3.0 g of (3-glycidyloxypropyl)trimethoxysilane (available from Millipore Sigma) is added over the course of 10 minutes and the pH is kept constant using the 2.5% hydrochloric acid solution. At the end of the addition, stirring is continued at 75° C. for 2 hours during which the silane hydrolyzes and the resulting silanols associate with the inorganic pigment surface.

Subsequently, the system is adjusted to a pH of 8.0 while maintaining the reaction temperature of 75° C. using 2.5% sodium hydroxide solution very slowly over the course of 1 hour during which time the condensation reaction occurs and the resulting siloxane bonds to the pigment surface leaving the unreacted epoxy end group free for subsequent functionalization. Stirring is continued at 75° C. for an additional 1 hour to complete the reaction and the pH falls to 7.0. The product is filtered off using vacuum filtration, washed with deionized water and dried at 140° C. for approximately 16 hours.

Subsequently, 100 g of polyamide resin such as nylon 6,6 is dissolved in N-methyl-2-pyrrolidone (NMP) with vigorous agitation. To this mixture is added 10 g of the epoxide functionalized REFLEX® 100 Sparkle Violet R-706E pigment from above and the reaction mixture with continuous agitation is increased to 150° C. for 2 hours to facilitate the curing reaction of the amino functional groups of the polyamide resin with the pendent glycidyloxypropyl (epoxide) group coating the surface of REFLEX® 100 Sparkle Violet R-706E pigment. After the polyamide resin has cured and coated the suspended REFLEX® 100 Sparkle Violet R-706E pigment the solvent is removed by filtering the particles using vacuum filtration and the material is thoroughly dried in a vacuum oven for 24 hours. Then a portion of this mixture is mixed with non-pigment-pendant polyamide in the Haake reaction with PDMS to form the particles.

Using 50 g of REFLEX® 100 Sparkle Violet R-706E pigment-pendent crosslinked by polyamide resin onto the pigment surface and 550 g of nylon 6,6 is melt mixed with 2000 g of polydimethylsiloxane (PDMS) of 10,000 specific viscosity by hot melt emulsification in a 25 mm twin-screw extruder (Werner & Pfleiderer ZSK-25). The polymer pellets are added to the extruder first, brought to the temperature of 230° C. and rpm of 900, and then preheated carrier fluid having AEROSIL® R812S silica nanoparticles (1.1-wt. % relative to PP-polyamide) dispersed therein is added to the molten polymer in the extruder.

Then the mixture is discharged into a container and allowed to cool to room temperature over several hours. The resultant mixture is then filtered through a 90 mm WHATMAN® #1 paper filter (available from SigmaAldrich) to separate the PP-polyamides particles from the carrier fluid. The particles are washed three times with 2000 mL of ethyl acetate. The particles are then allowed to dry overnight in vacuum oven at ambient temperature. Optionally, the dried particles can be screened through a 150-μm sieve. The PP-polyamide particles are then characterized for size with a Malvern MASTERSIZER™ 3000 and morphology with SEM micrographs. The D50 (μm) is predicted to be around 75 μm with a span of about 1.30.

Full text: Click here
Patent 2024

Example 4

Into a 2 liter glass reactor equipped with an overhead mechanical stirrer and a heating mantle is added 100 g of Reflex® Glitter Blue pigment, product code R-781E (available from Creation of Quality Value Company Ltd.) suspended in 900 mL of deionized water and heated to 40° C. with vigorous stirring. The suspension is adjusted to pH of 3.3 using 2.5% hydrochloric acid and the temperature is raised to 75° C.

Subsequently, 3.0 g of (3-glycidyloxypropyl)trimethoxysilane (available from Millipore Sigma) is added over the course of 10 minutes and the pH is kept constant using the 2.5% hydrochloric acid solution. At the end of the addition, stirring is continued at 75° C. for 2 hours during which the silane hydrolyzes and the resulting silanols associate with the inorganic pigment surface.

Subsequently, the system is adjusted to a pH of 8.0 while maintaining the reaction temperature of 75° C. using 2.5% sodium hydroxide solution very slowly over the course of 1 hour during which time the condensation reaction occurs and the resulting siloxane bonds to the pigment surface leaving the unreacted epoxy end group free for subsequent functionalization. Stirring is continued at 75° C. for an additional 1 hour to complete the reaction and the pH falls to 7.0. The product is filtered off using vacuum filtration, washed with deionized water and dried at 140° C. for approximately 16 hours.

Subsequently, 50 g of polyamide resin such as nylon 6,6 is melt mixed with 10 g of the above epoxide surface functionalized mica pigment Reflex® Glitter Blue R-871E melt mixed in the Haake mixer at 150° C. to 200° C. for 20 to 30 minutes to facilitate the crosslinking reaction of the epoxide with the amino group of the polyamide resin. The resulting pigment-pendent polyamide resin concentrate is discharged from the Haake mixer, cooled and grounded into a fine powder for subsequent incorporation into pigmented polyamide micron particles.

Using 30 g of REFLEX® Glitter Blue R-871E pigment-pendent crosslinked polyamide resin onto the pigment surface and 570 g of nylon 6,6 is melt mixed with 2000 g of polydimethylsiloxane (PDMS) of 10,000 specific viscosity by hot melt emulsification in a 25 mm twin-screw extruder (Werner & Pfleiderer ZSK-25). The polymer pellets are added to the extruder first, brought to the temperature of 230° C. and rpm of 900, and then preheated carrier fluid having AEROSIL® R812S silica nanoparticles (1.1 wt % relative to PP-polyamide) dispersed therein is added to the molten polymer in the extruder.

Then the mixture is discharged into a container and allowed to cool to room temperature over several hours. The resultant mixture is then filtered through a 90 mm WHATMAN® #1 paper filter (available from SigmaAldrich) to separate the PP-polyamides particles from the carrier fluid. The particles are washed three times with 2000 mL of ethyl acetate. The particles are then allowed to dry overnight in vacuum oven at ambient temperature. Optionally, the dried particles can be screened through a 150-μm sieve. The PP-polyamide particles are then characterized for size with a Malvern MASTERSIZER™ 3000 and morphology with SEM micrographs. The D50 (μm) is predicted to be around 65 μm with a span of about 1.10.

Full text: Click here
Patent 2024

Top products related to «Trimethoxysilane»

Sourced in United States, Germany, Sao Tome and Principe, United Kingdom, France
3-aminopropyltrimethoxysilane is a silane compound used as a coupling agent in various applications. It serves as a molecular bridge, facilitating the attachment of organic compounds to inorganic materials. This substance is commonly utilized in the manufacturing and modification of materials, coatings, and surfaces.
Sourced in Germany, United States, United Kingdom, India, Italy, France, Spain, Australia, China, Poland, Switzerland, Canada, Ireland, Japan, Singapore, Sao Tome and Principe, Malaysia, Brazil, Hungary, Chile, Belgium, Denmark, Macao, Mexico, Sweden, Indonesia, Romania, Czechia, Egypt, Austria, Portugal, Netherlands, Greece, Panama, Kenya, Finland, Israel, Hong Kong, New Zealand, Norway
Hydrochloric acid is a commonly used laboratory reagent. It is a clear, colorless, and highly corrosive liquid with a pungent odor. Hydrochloric acid is an aqueous solution of hydrogen chloride gas.
Sourced in United States, France, United Kingdom, Germany, Denmark
(3-mercaptopropyl)trimethoxysilane is a chemical compound used in the production of various lab equipment and materials. It is a silane-based coupling agent that is commonly used to modify the surface properties of materials. The compound contains a mercapto group (-SH) and three methoxy groups (-OCH3), which can interact with and bind to different substrates.
Sourced in Germany, United States, United Kingdom, Italy, India, France, China, Australia, Spain, Canada, Switzerland, Japan, Brazil, Poland, Sao Tome and Principe, Singapore, Chile, Malaysia, Belgium, Macao, Mexico, Ireland, Sweden, Indonesia, Pakistan, Romania, Czechia, Denmark, Hungary, Egypt, Israel, Portugal, Taiwan, Province of China, Austria, Thailand
Ethanol is a clear, colorless liquid chemical compound commonly used in laboratory settings. It is a key component in various scientific applications, serving as a solvent, disinfectant, and fuel source. Ethanol has a molecular formula of C2H6O and a range of industrial and research uses.
Sourced in Germany, United States, India, United Kingdom, Italy, China, Spain, France, Australia, Canada, Poland, Switzerland, Singapore, Belgium, Sao Tome and Principe, Ireland, Sweden, Brazil, Israel, Mexico, Macao, Chile, Japan, Hungary, Malaysia, Denmark, Portugal, Indonesia, Netherlands, Czechia, Finland, Austria, Romania, Pakistan, Cameroon, Egypt, Greece, Bulgaria, Norway, Colombia, New Zealand, Lithuania
Sodium hydroxide is a chemical compound with the formula NaOH. It is a white, odorless, crystalline solid that is highly soluble in water and is a strong base. It is commonly used in various laboratory applications as a reagent.
Sourced in United States, Germany, India, Spain, United Kingdom, France, Poland, Italy, Australia, Canada, China
Tetraethyl orthosilicate is a chemical compound used in the manufacturing of various laboratory equipment and materials. It is a clear, colorless liquid with a specific chemical formula of Si(OC2H5)4. The primary function of tetraethyl orthosilicate is to serve as a precursor for the synthesis of silicon-based materials, including silica gels, glasses, and coatings.
Sourced in United States, Germany, Italy, United Kingdom, India, Spain, Japan, Poland, France, Switzerland, Belgium, Canada, Portugal, China, Sweden, Singapore, Indonesia, Australia, Mexico, Brazil, Czechia
Toluene is a colorless, flammable liquid with a distinctive aromatic odor. It is a common organic solvent used in various industrial and laboratory applications. Toluene has a chemical formula of C6H5CH3 and is derived from the distillation of petroleum.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in Germany, United States, Italy, India, United Kingdom, China, France, Poland, Spain, Switzerland, Australia, Canada, Sao Tome and Principe, Brazil, Ireland, Japan, Belgium, Portugal, Singapore, Macao, Malaysia, Czechia, Mexico, Indonesia, Chile, Denmark, Sweden, Bulgaria, Netherlands, Finland, Hungary, Austria, Israel, Norway, Egypt, Argentina, Greece, Kenya, Thailand, Pakistan
Methanol is a clear, colorless, and flammable liquid that is widely used in various industrial and laboratory applications. It serves as a solvent, fuel, and chemical intermediate. Methanol has a simple chemical formula of CH3OH and a boiling point of 64.7°C. It is a versatile compound that is widely used in the production of other chemicals, as well as in the fuel industry.
Sourced in United States, Germany, India, United Kingdom, Italy, China, Poland, France, Spain, Sao Tome and Principe, Mexico, Brazil, Japan, Belgium, Singapore, Australia, Canada, Switzerland
Silver nitrate is a chemical compound with the formula AgNO3. It is a colorless, water-soluble salt that is used in various laboratory applications.

More about "Trimethoxysilane"

methyltrimethoxysilane, MTMS, silicone materials, polymer synthesis, thin-film deposition, surface modification, silane coupling agents, APTMS, MPTMS, solvents, reagents, nanoparticles