The elastic modulus (Young's modulus), E, of the gels was evaluated by applying a known hydrodynamic shear stress, τ, to the gel surface using a custom-built microfluidic device, measuring the resulting bead displacement, , calculating the shear of the gel, , and applying the equation , where ν is the Poisson ratio, as explained in detail elsewhere [26] . Because the Poisson ratio of silicone gels is nearly equal to 0.5 [27] , the equation was reduced to . To measure the gel thickness, , a small amount of the 40 nm far-red fluorescent beads was deposited on the cover glass surface before it was coated with the gel pre-polymer. The fluorescence microscope was first focused on beads on the glass surface and then on those on the gel surface and the difference in the readings of the nosepiece (z-axis) knob was recorded (with a correction for the mismatch between the refractive indices of the gel and immersion liquid), resulting in ∼1 µm accuracy. The shear, , was found to be a zero-crossing linear function of τ for of up to at least 3 µm (greater than produced by HUVECs; see below) for all gels, with no sign of plastic deformations (see also [26] ), thus validating the use of the equation , which applies to linear materials. Furthermore, measurements of vs. at different constant values of τ resulted in linear dependencies, indicating homogeneity of mechanical properties of the gel layers.
Trimethoxysilane
It has a wide range of industrial and research applications, including the production of silicone materials, adhesives, and coatings.
The optimization of Trimethoxysilane research is crucial for enhancing reproducibility and accuracy in related studies.
PubCompare.ai offers a platform to help researchers locate the most reliable protocols from literature, preprints, and patents, utilizing AI-driven comparisons to identify the best products and procedures for their work.
This streamlines the research process and ensures the most accurate results, supporting the advancement of Trimethoxysilane-based technologies.
Most cited protocols related to «Trimethoxysilane»
The elastic modulus (Young's modulus), E, of the gels was evaluated by applying a known hydrodynamic shear stress, τ, to the gel surface using a custom-built microfluidic device, measuring the resulting bead displacement, , calculating the shear of the gel, , and applying the equation , where ν is the Poisson ratio, as explained in detail elsewhere [26] . Because the Poisson ratio of silicone gels is nearly equal to 0.5 [27] , the equation was reduced to . To measure the gel thickness, , a small amount of the 40 nm far-red fluorescent beads was deposited on the cover glass surface before it was coated with the gel pre-polymer. The fluorescence microscope was first focused on beads on the glass surface and then on those on the gel surface and the difference in the readings of the nosepiece (z-axis) knob was recorded (with a correction for the mismatch between the refractive indices of the gel and immersion liquid), resulting in ∼1 µm accuracy. The shear, , was found to be a zero-crossing linear function of τ for of up to at least 3 µm (greater than produced by HUVECs; see below) for all gels, with no sign of plastic deformations (see also [26] ), thus validating the use of the equation , which applies to linear materials. Furthermore, measurements of vs. at different constant values of τ resulted in linear dependencies, indicating homogeneity of mechanical properties of the gel layers.
Most recents protocols related to «Trimethoxysilane»
Example 2
Into a 2 liter glass reactor equipped with an overhead mechanical stirrer and a heating mantle is added 100 g of BLONDIEE® Metallic Super Gold pigment, product code N-2002S (available from Creation of Quality Value Company Ltd.) suspended in 900 mL of deionized water and heated to 40° C. with vigorous stirring. The suspension is adjusted to pH of 3.3 using 2.5% hydrochloric acid and the temperature is raised to 75° C.
Subsequently, 3.0 g of (3-glycidyloxypropyl)trimethoxysilane (available from Millipore Sigma) is added over the course of 10 minutes and the pH is kept constant using the 2.5% hydrochloric acid solution. At the end of the addition, stirring is continued at 75° C. for 2 hours during which the silane hydrolyzes and the resulting silanols associate with the inorganic pigment surface.
Subsequently, the system is adjusted to a pH of 8.0 while maintaining the reaction temperature of 75° C. using 2.5% sodium hydroxide solution very slowly over the course of 1 hour during which time the condensation reaction occurs and the resulting siloxane bonds to the pigment surface leaving the unreacted epoxy end group free for subsequent functionalization. Stirring is continued at 75° C. for an additional 1 hour to complete the reaction and the pH falls to 7.0. The product is filtered off using vacuum filtration, washed with deionized water and dried at 140° C. for approximately 16 hours.
Subsequently, 50 g of polyamide resin such as nylon 6,6 is melt mixed with 10 g of the above epoxide surface functionalized mica pigment Blondiee® Metallic Super Gold melt mixed in the Haake mixer at 150° C. to 200° C. for 20 to 30 minutes to facilitate the crosslinking reaction of the epoxide with the amino group of the polyamide resin. The resulting pigment-pendent polyamide resin concentrate is discharged from the Haake mixer, cooled and grounded into a fine powder for subsequent incorporation into pigmented polyamide micron particles.
Using 1.5 g of BLONDIEE® Metallic Super Gold pigment-pendent crosslinked polyamide resin onto the pigment surface and 28.5 g of nylon 6,6 is melt mixed with 150 g of polydimethylsiloxane (PDMS) of 30,000 specific viscosity by hot melt emulsification in a Haake mixer fitted with a 300 ml mixing vessel. The mixer is heated to 230° C. and mixed at 200 rpm for 20 minutes.
Then, the mixture is discharged from the Haake onto a cold surface to provide rapid quench cooling. The resultant mixture is then filtered through a 90 mm WHATMAN® #1 paper filter (available from SigmaAldrich) to separate the PP-polyamides particles from the carrier fluid. The particles are washed three times with 1000 mL of ethyl acetate. The particles are then allowed to air dry overnight in an aluminum pan in a fume hood. Optionally, the dried particles can be screened through a 150-μm sieve. The PP-polyamide particles are then characterized for size with a Malvern MASTERSIZER™ 3000 and morphology with SEM micrographs. The D50 (μm) is predicted to be around 65 μm with a span of about 1.20.
Example 1
Into a 2 liter glass reactor equipped with an overhead mechanical stirrer and a heating mantle is added 100 g of IRIODIN® 100 Silver Pearl pigment (available from E. Merck KGaA, Darmstadt) suspended in 900 mL of deionized water and heated to 40° C. with vigorous stirring. The suspension is adjusted to pH of 3.3 using 2.5% hydrochloric acid and the temperature is raised to 75° C.
Subsequently, 3.0 g of (3-glycidyloxypropyl)trimethoxysilane (available from Millipore Sigma) is added over the course of 10 minutes and the pH is kept constant using the 2.5% hydrochloric acid solution. At the end of the addition, stirring is continued at 75° C. for 2 hours during which the silane hydrolyzes and the resulting silanols associate with the inorganic pigment surface.
Subsequently, the system is adjusted to a pH of 8.0 while maintaining the reaction temperature of 75° C. using 2.5% sodium hydroxide solution very slowly over the course of 1 hour during which time the condensation reaction occurs and the resulting siloxane bonds to the pigment surface leaving the unreacted epoxy end group free for subsequent functionalization. Stirring is continued at 75° C. for an additional 1 hour to complete the reaction and the pH falls to 7.0. The product is filtered off using vacuum filtration, washed with deionized water and dried at 140° C. for approximately 16 hours.
Subsequently, 100 g of polyamide resin, such as nylon 6,6, is dissolved in N-methyl-2-pyrrolidone (NMP) with vigorous agitation. To this mixture is added 10 g of the epoxide functionalized IRIODIN® 100 Silver Pearl pigment from above and the reaction mixture with continuous agitation is increased to 150° C. for 2 hours to facilitate the curing reaction of the amino functional groups of the polyamide resin with the pendent glycidyloxypropyl (epoxide) group coating the surface of IRIODIN® 100 Silver Pearl pigment. After the polyamide resin has cured and coated the suspended IRIODIN® 100 Silver Pearl pigment the solvent is removed by filtering the particles using vacuum filtration and the material is thoroughly dried in a vacuum oven for 24 hours. Then a portion of this mixture is mixed with non-pigment-pendant polyamide in the Haake reaction with PDMS to form the particles.
Using 2.5 g of IRIODIN® 100 Silver Pearl pigment-pendent crosslinked by polyamide resin onto the pigment surface and 27.5 g of nylon 6,6 is melt mixed with 150 g of polydimethylsiloxane (PDMS) of 60,000 specific viscosity by hot melt emulsification in a Haake mixer fitted with a 300 ml mixing vessel. The mixer is heated to 230° C. and mixed at 200 rpm for 20 minutes. Then, the mixture is discharged from the Haake onto a cold surface to provide rapid quench cooling. The resultant mixture is then filtered through a 90 mm WHATMAN® #1 paper filter (available from SigmaAldrich) to separate the PP-polyamide particles from the carrier fluid. The PP-polyamide particles are washed three times with 1000 mL of ethyl acetate. The PP-polyamide particles are then allowed to air dry overnight in an aluminum pan in a fume hood. Optionally, the dried PP-polyamide particles can be screened through a 150-μm sieve. The PP-polyamide particles are then characterized for size with a Malvern MASTERSIZER™ 3000 and morphology with SEM micrographs. The D50 (μm) is predicted to be around 50 μm with a span of about 0.85.
Example 3
Into a 2 liter glass reactor equipped with an overhead mechanical stirrer and a heating mantle is added 100 g of REFLEX® 100 Sparkle Violet R-706E pigment (available from Creation of Quality Value Company Ltd.) suspended in 900 mL of deionized water and heated to 40° C. with vigorous stirring. The suspension is adjusted to pH of 3.3 using 2.5% hydrochloric acid and the temperature is raised to 75° C.
Subsequently, 3.0 g of (3-glycidyloxypropyl)trimethoxysilane (available from Millipore Sigma) is added over the course of 10 minutes and the pH is kept constant using the 2.5% hydrochloric acid solution. At the end of the addition, stirring is continued at 75° C. for 2 hours during which the silane hydrolyzes and the resulting silanols associate with the inorganic pigment surface.
Subsequently, the system is adjusted to a pH of 8.0 while maintaining the reaction temperature of 75° C. using 2.5% sodium hydroxide solution very slowly over the course of 1 hour during which time the condensation reaction occurs and the resulting siloxane bonds to the pigment surface leaving the unreacted epoxy end group free for subsequent functionalization. Stirring is continued at 75° C. for an additional 1 hour to complete the reaction and the pH falls to 7.0. The product is filtered off using vacuum filtration, washed with deionized water and dried at 140° C. for approximately 16 hours.
Subsequently, 100 g of polyamide resin such as nylon 6,6 is dissolved in N-methyl-2-pyrrolidone (NMP) with vigorous agitation. To this mixture is added 10 g of the epoxide functionalized REFLEX® 100 Sparkle Violet R-706E pigment from above and the reaction mixture with continuous agitation is increased to 150° C. for 2 hours to facilitate the curing reaction of the amino functional groups of the polyamide resin with the pendent glycidyloxypropyl (epoxide) group coating the surface of REFLEX® 100 Sparkle Violet R-706E pigment. After the polyamide resin has cured and coated the suspended REFLEX® 100 Sparkle Violet R-706E pigment the solvent is removed by filtering the particles using vacuum filtration and the material is thoroughly dried in a vacuum oven for 24 hours. Then a portion of this mixture is mixed with non-pigment-pendant polyamide in the Haake reaction with PDMS to form the particles.
Using 50 g of REFLEX® 100 Sparkle Violet R-706E pigment-pendent crosslinked by polyamide resin onto the pigment surface and 550 g of nylon 6,6 is melt mixed with 2000 g of polydimethylsiloxane (PDMS) of 10,000 specific viscosity by hot melt emulsification in a 25 mm twin-screw extruder (Werner & Pfleiderer ZSK-25). The polymer pellets are added to the extruder first, brought to the temperature of 230° C. and rpm of 900, and then preheated carrier fluid having AEROSIL® R812S silica nanoparticles (1.1-wt. % relative to PP-polyamide) dispersed therein is added to the molten polymer in the extruder.
Then the mixture is discharged into a container and allowed to cool to room temperature over several hours. The resultant mixture is then filtered through a 90 mm WHATMAN® #1 paper filter (available from SigmaAldrich) to separate the PP-polyamides particles from the carrier fluid. The particles are washed three times with 2000 mL of ethyl acetate. The particles are then allowed to dry overnight in vacuum oven at ambient temperature. Optionally, the dried particles can be screened through a 150-μm sieve. The PP-polyamide particles are then characterized for size with a Malvern MASTERSIZER™ 3000 and morphology with SEM micrographs. The D50 (μm) is predicted to be around 75 μm with a span of about 1.30.
Example 4
Into a 2 liter glass reactor equipped with an overhead mechanical stirrer and a heating mantle is added 100 g of Reflex® Glitter Blue pigment, product code R-781E (available from Creation of Quality Value Company Ltd.) suspended in 900 mL of deionized water and heated to 40° C. with vigorous stirring. The suspension is adjusted to pH of 3.3 using 2.5% hydrochloric acid and the temperature is raised to 75° C.
Subsequently, 3.0 g of (3-glycidyloxypropyl)trimethoxysilane (available from Millipore Sigma) is added over the course of 10 minutes and the pH is kept constant using the 2.5% hydrochloric acid solution. At the end of the addition, stirring is continued at 75° C. for 2 hours during which the silane hydrolyzes and the resulting silanols associate with the inorganic pigment surface.
Subsequently, the system is adjusted to a pH of 8.0 while maintaining the reaction temperature of 75° C. using 2.5% sodium hydroxide solution very slowly over the course of 1 hour during which time the condensation reaction occurs and the resulting siloxane bonds to the pigment surface leaving the unreacted epoxy end group free for subsequent functionalization. Stirring is continued at 75° C. for an additional 1 hour to complete the reaction and the pH falls to 7.0. The product is filtered off using vacuum filtration, washed with deionized water and dried at 140° C. for approximately 16 hours.
Subsequently, 50 g of polyamide resin such as nylon 6,6 is melt mixed with 10 g of the above epoxide surface functionalized mica pigment Reflex® Glitter Blue R-871E melt mixed in the Haake mixer at 150° C. to 200° C. for 20 to 30 minutes to facilitate the crosslinking reaction of the epoxide with the amino group of the polyamide resin. The resulting pigment-pendent polyamide resin concentrate is discharged from the Haake mixer, cooled and grounded into a fine powder for subsequent incorporation into pigmented polyamide micron particles.
Using 30 g of REFLEX® Glitter Blue R-871E pigment-pendent crosslinked polyamide resin onto the pigment surface and 570 g of nylon 6,6 is melt mixed with 2000 g of polydimethylsiloxane (PDMS) of 10,000 specific viscosity by hot melt emulsification in a 25 mm twin-screw extruder (Werner & Pfleiderer ZSK-25). The polymer pellets are added to the extruder first, brought to the temperature of 230° C. and rpm of 900, and then preheated carrier fluid having AEROSIL® R812S silica nanoparticles (1.1 wt % relative to PP-polyamide) dispersed therein is added to the molten polymer in the extruder.
Then the mixture is discharged into a container and allowed to cool to room temperature over several hours. The resultant mixture is then filtered through a 90 mm WHATMAN® #1 paper filter (available from SigmaAldrich) to separate the PP-polyamides particles from the carrier fluid. The particles are washed three times with 2000 mL of ethyl acetate. The particles are then allowed to dry overnight in vacuum oven at ambient temperature. Optionally, the dried particles can be screened through a 150-μm sieve. The PP-polyamide particles are then characterized for size with a Malvern MASTERSIZER™ 3000 and morphology with SEM micrographs. The D50 (μm) is predicted to be around 65 μm with a span of about 1.10.