Genomic DNA was extracted from the clipped tails of mice by Proteinase K lysis buffer as previously described42 (link). The genetic status of each mouse was determined from the genome analysis of the twitcher mutation, as reported in ref. 31 (link). TWI male mice at P30 and P15 and their WT male littermates were used for experiments, while the TWI-Het littermates for the TWI colony maintenance31 (link), 42 (link). Surgical procedures for fixation were performed under urethane anesthesia (Sigma, 0.8 ml/hg), and all efforts were made to minimize mice suffering.
Urethane
It is used as a solvent, a plasticizer, and a research tool in the life sciences.
Urethane exhibits unique properties, including low toxicity and high stability, which make it valuable for a wide range of applications.
This MeSH term provides a concise overview of urethane's chemical structure, functionality, and research applications, helping researchers optimzie their protocols and enhance the reproducibility of their studies.
Most cited protocols related to «Urethane»
Genomic DNA was extracted from the clipped tails of mice by Proteinase K lysis buffer as previously described42 (link). The genetic status of each mouse was determined from the genome analysis of the twitcher mutation, as reported in ref. 31 (link). TWI male mice at P30 and P15 and their WT male littermates were used for experiments, while the TWI-Het littermates for the TWI colony maintenance31 (link), 42 (link). Surgical procedures for fixation were performed under urethane anesthesia (Sigma, 0.8 ml/hg), and all efforts were made to minimize mice suffering.
As an alternative to neonatal porcine skin, Parafilm M® (PF) film and a needle testing polyurethane film were used as skin simulants. A sheet of Parafilm was folded to get an eight-layer film (≈1 mm thickness) and a poly(urethane) needle testing film (Deka®) was used as received (0.4 mm thickness). The skin/Parafilm® was then placed onto a sheet of expanded poly(ethylene) for support.
Two insertion methods were carried out: manual and Texture Analyser insertion. For manual insertion, different volunteers were recruited to apply the MN arrays following the same instructions as in the force measurement experiment. The Texture Analyser insertion was performed using a TA.XTPlus Texture Analyser (Stable Micro Systems, Surrey, UK) in compression mode. MN arrays were placed on the surface of the skin/artificial membrane and sticky tape (Office Depot, Boca Raton, USA) was carefully applied on the upper surface without applying force (
Most recents protocols related to «Urethane»
Example 22
To a four-necked flask (1 L volume) equipped with stirring blades, a thermometer, a dropping funnel and a condenser tube, 500 mL of toluene, 30.6 g (0.11 mol) of 4,4′-(propane-2,2-diyl)bis(isocyanate-benzene), and 63.1 mg of p-methoxyphenol were added and dissolved. Next, 14.3 g (0.11 mol) of 2-hydroxyethyl methacrylate was weighed in a beaker, 150 mL of toluene was added, and the mixture was stirred thoroughly and transferred to a dropping funnel. The four-necked flask was immersed in an oil bath heated to 80° C., and 2-hydroxyethyl methacrylate was added dropwise with stirring. After completion of the dropwise addition, the reaction was continued while maintaining the temperature of an oil bath for 24 hours, leading to aging. After completion of the aging, the four-necked flask was removed from the oil bath and the reaction product was returned to room temperature, and then HPLC and FT-IR measurements were performed. Analysis conditions of the HPLC measurement are as follows: a column of ZORBAX-ODS, acetonitrile/distilled water of 7/3, a flow rate of 0.5 mL/min, a multi-scanning UV detector, an RI detector and an MS detector. The FT-IR measurement was performed by an ATR method. As a result of the HPLC measurement, the raw materials 4,4′-(propane-2,2-diyl)bis(isocyanate-benzene) and 2-hydroxyethyl methacrylate disappeared and a new peak of 2-(((4-(2-(4-isocyanate-phenyl)propane-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate (molecular weight 408.45) was confirmed. As a result of FT-IR measurement, a decrease in isocyanate absorption intensity at 2280-2250 cm−1 and a disappearance of hydroxy group absorption near 3300 cm−1 were confirmed, and a new absorption attributed to urethane group at 1250 cm−1 was confirmed. Next, to a toluene solution containing 40.8 g (0.10 mol) of the precursor compound synthesized in the above procedure, 22.2 g (0.10 mol) of 3-(triethoxysilyl)propan-1-ol was added dropwise with stirring. The reaction was performed with the immersion in an oil bath heated to 80° C. in the same way as in the first step. After completion of the dropwise addition, the reaction was continued for 24 hours, leading to aging. After completion of the aging, HPLC and FT-IR measurements were performed. As a result of the HPLC measurement, the peaks of the raw materials 2-(((4-(2-(4-isocyanate-phenyl)propane-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate and 3-(triethoxysilyl)propan-1-ol disappeared and 2-(((4-(2-(4-(((3-(triethoxysilyl)propoxy)carbonyl)amino)phenyl)propan-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate (molecular weight 630.81) was confirmed. As a result of FT-IR measurement, a disappearance of isocyanate absorption at 2280-2250 cm−1 and a disappearance of hydroxy group absorption near 3300 cm−1 were confirmed. The chemical structure formula of the compound synthesized in this synthetic example are described below.
Example 109
The mixture of compound 117-1 (0.03 g, 94.8 umol, 1 eq), HATU (54.1 mg, 0.14 mmol, 1.5 eq) and DIPEA (36.7 mg, 0.28 mmol, 49.5 uL, 3 eq) in DMF (1 mL) was stirred at 25° C. for 1 hr. tert-butyl N-(2-aminoethyl)-N-methyl-carbamate (19.8 mg, 0.11 mmol, 20.3 uL, 1.2 eq) was added into the reaction. The mixture was stirred at 25° C. for another 1 hr. LCMS showed the reaction was complete. The mixture was partitioned between EA (5 mL) and brine (5 mL). The organic layer was washed with brine (5 mL), dried over anhydrous Na2SO4 and concentrated in vacuum to afford the crude product. The crude product was purified by prep-HPLC. The title compound (6 mg, 12.5 umol, 13.2% yield) was obtained as white solid. LCMS (ESI): RT=0.878 min, mass calcd for C26H27F3N2O3. 1H NMR (400 MHz, CD3OD) δ 8.48 (br d, J=14.6 Hz, 1H), 8.07 (d, J=8.0 Hz, 1H), 7.93-7.82 (m, 4H), 7.74-7.64 (m, 3H), 7.59 (d, J=6.5 Hz, 1H), 3.64-3.58 (m, 1H), 3.58-3.54 (m, 1H), 3.65-3.51 (m, 2H), 2.97 (br s, 3H), 1.39 (br d, J=18.8 Hz, 9H).
Example 70
The mixture of compound 75-1 (50 mg, 0.15 mmol, 1 eq), DIEA (30.6 mg, 0.23 mmol, 41.3 uL, 1.5 eq) and HATU (90.1 mg, 0.23 mmol, 1.5 eq) in DCM (1 mL) was stirred at 25° C. for 1 hr. Then tert-butyl N-[2-[2-[2-[2-(2-aminoethoxy)ethoxy]ethoxy]ethoxy]ethyl]carbamate (53.1 mg, 0.15 mmol, 1 eq) was added at the mixture and the mixture was stirred at 25° C. for 1 hr. LC-MS and HPLC showed the desired compound was detected. The reaction mixture was diluted with H2O (10 mL) and the mixture was extracted with EA (10 mL*3). The combined organic phase was washed with brine (10 mL*3), dried with anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was purified by prep-HPLC. The title compound (25 mg, 39.3 umol, 24.9% yield) was obtained as yellow oil. LCMS (ESI): RT=0.886 min, mass calc. for C33H41F3N2O7 634.68, m/z found 657.1 [M+Na]+; 1H NMR (400 MHz, CD3OD) δ 1.43 (s, 9H), 3.18 (t, J=5.52 Hz, 2H), 3.44 (t, J=5.52 Hz, 2H), 3.49-3.54 (m, 2H), 3.54-3.59 (m, 2H), 3.59-3.63 (m, 2H), 3.64-3.68 (m, 4H), 3.69 (s, 3H), 3.71-3.76 (m, 2H), 7.59 (d, J=7.03 Hz, 1H), 7.64-7.74 (m, 3H), 7.81-7.94 (m, 4H), 8.09 (d, J=8.28 Hz, 1H), 8.51 (s, 1H).
Example 143
To a solution of compound 645 (0.050 g, 0.0549 mmol, 1.0 eq.) and tert-butyl (2-(2-(2-(2-aminoethoxy)ethoxy)ethoxy)ethyl)carbamate (0.024 g, 0.0824 mmol, 1.5 eq.) in anhydrous DCM (10 mL) at 0° C. was added EDCI (0.032 g, 0.1647 mmol, 3.0 eq.). After stirring for 10 minutes, the reaction was warmed to r.t. and stirred overnight. The mixture was then diluted with DCM and washed with water and brine, dried over anhydrous Na2SO4, concentrated and purified by SiO2 column chromatography (DCM/MeOH) to give the title compound as a yellow foamy solid (0.030 g, 46% yield). ESI m/z calcd for C58H92N9O15S [M+H]+: 1186.6, found: 1186.6.
Example 49
To a solution of compound 49-1 (50 mg, 0.16 mmol, 1 eq) and tert-butyl N-[2-[2-(2-aminoethoxy)ethoxy]ethyl]carbamate (47.1 mg, 0.19 mmol, 1.2 eq) in DCM (1 mL) was added HATU (90.2 mg, 0.24 mmol, 1.5 eq) and DIEA (30.7 mg, 0.24 mmol, 41.3 uL, 1.5 eq). The mixture was stirred at 25° C. for 2 hr. LCMS showed the starting material was consumed and the desired mass wad detected. H2O (30 mL) was added to the solution. The mixture was extracted with ethyl acetate (35 mL*3). The combined organic layers were washed with brine (60 mL*2), dried over anhydrous Na2SO4, filtered and concentrated in vacuum. The residue was purified by prep-HPLC. The title compound (16.8 mg, 30.6 umol, 19.3% yield) was obtained as a white solid. LCMS (ESI): RT=0.889 min, mass calc. for C29H33F3N2O5 546.58, m/z found 569.1 [M+Na]+; 1H NMR (400 MHz, DMSO-d6) δ 8.74 (br t, J=5.5 Hz, 1H), 8.56 (s, 1H), 8.12 (d, J=8.3 Hz, 1H), 8.15-8.09 (m, 1H), 7.96-7.90 (m, 3H), 7.81 (d, J=8.8 Hz, 1H), 7.77-7.67 (m, 3H), 7.60 (d, J=7.0 Hz, 1H), 6.76 (br s, 1H), 3.62-3.46 (m, 8H), 3.41-3.35 (m, 3H), 3.05 (q, J=5.9 Hz, 2H), 1.36 (s, 9H).
Top products related to «Urethane»
More about "Urethane"
This chemical is used as a solvent, a plasticizer, and a valuable research tool in the life sciences.
Urethane exhibits unique properties, including low toxicity and high stability, making it a popular choice for various industries.
Urethane's chemical structure and functionality make it a valuable compound for researchers.
It is often used in conjunction with other laboratory equipment and techniques, such as the VT1000S or VT1200S cryostats, the Micro BCA Protein Assay Kit, and the PowerLab data acquisition system.
These tools can help optimize protocols and enhance the reproducibility of Urethane-based studies.
Researchers can leverage the insights gained from Urethane's MeSH term description to streamline their workflows and unlock new possibilities.
By understanding the properties and applications of this compound, scientists can design more effective experiments, leading to more reliable and reproducible results.
Whether you're working with Urethane as a solvent, a plasticizer, or a research tool, exploring its synergies with related compounds and technologies can be a game-changer.
Stay ahead of the curve by keeping up with the latest advancements in Urethane research and unlocking the full potential of this versatile organic compound.