The largest database of trusted experimental protocols

Fluorescein

Fluorescein is a synthetic organic compound commonly used in various fields, including biomedical research, ophthalmology, and environmental monitoring.
This highly fluorescent dye has a wide range of applications, from tracing the flow of aqueous humor in the eye to detecting groundwater movement.
PubCompare.ai's AI-driven platform can optimize your Fluorescein research by helping you easily locate relevant protocols from literature, preprints, and patents, and leveraging AI-powered comparisons to identify the best protocols and produts.
Take your Fluorescein reseach to the next level with PubCompare.ai's intuitive tools and discover new insights that can advance your work.

Most cited protocols related to «Fluorescein»

Transwell invasion assay was performed as described previously4 (link). In brief, cells were loaded onto the upper well of the Transwell chamber with 8 µm ϕ pore membrane (Coster), precoated with Matrigel on an upper side of the chamber. The lower well was filled with 600 µl of DMEM containing 10% FBS. After incubation for 24 hr, cells invaded to lower surface of the membrane were counted. For ECM degradation assay, glass coverslips were coated with gelatin conjugated with either Alexa Fluor 594 (Invitrogen) (Alexa-gelatin) or fluorescein (Invitrogen) (FL-gelatin) as described65 (link). Transfected cells were trypsinized, replated on these glass coverslips, and cultured for 6 hr. After fixation, cells were fixed and stained with phalloidin. Number of invadopodia, identified as F-actin dots in the areas of degraded gelatin, was quantified by using the ImageJ particle analysis tool.
Full text: Click here
Publication 2017
Alexa594 Biological Assay Cells F-Actin Fluorescein Gelatins matrigel Phalloidine Podosomes Tissue, Membrane
Three prospective cohorts of individuals with signs and symptoms suggestive of SS have been recruited over the past 10 years by teams who are now members of the International SS Criteria Working Group. These include 1) the SICCA cohort, comprised of 3514 participants (including 1578 individuals who meet the ACR classification criteria for pSS) recruited from Argentina, China, Denmark, India, Japan, the UK and the USA (co-principal investigators (PIs): C. Shiboski and L. Criswell, at the University of California San Francisco); 2) the Paris-Sud cohort that includes 1011 participants (including 440 individuals who meet the AECG criteria for pSS) recruited in Paris, France (PI: X. Mariette at Paris-Sud University, Bicêtre hospital in Paris); and 3) the OMRF cohort, that includes 837 participants (including 279 individuals who meet the AECG criteria for pSS) evaluated at either the Sjögren’s Research Clinic at OMRF or the Sjögren’s Clinic in the University of Minnesota (PI: K. Sivils,OMRF).
These cohorts share several key characteristics that make them appropriate for criteria development: Inclusion criteria required that participants have signs and symptoms suggestive of SS, warranting a comprehensive work-up by a multi-disciplinary team of SS clinicians. In addition to symptom-related data, objective tests with respect to oral, ocular, and systemic/serological endpoints had been collected using similar procedures:

Oral tests: labial salivary gland (LSG) biopsy to identify focal lymphocytic sialadenitis (FLS) and focus score (FS)(26 (link)); UWS flow rates.(27 (link), 28 (link))

Ocular tests: OSS using lissamine green and fluorescein, and other ocular tests such as Schirmer test and tear break-up time. For the ocular staining test, the Paris-Sud cohort used the VBS,(29 (link)) while SICCA used the OSS,(30 (link)) and OMRF used both. The Paris-Sud cohort also used fluorescein and collected data on the individual OSS components, so it could be computed subsequently. Thus data from the Paris-Sud and OMRF cohorts could be analyzed to establish a conversion algorithm between both scores as follows: for lower scores, 1–3, the VBS was equal to the OSS, but VBS of 4, 5, or 6 were equivalent to OSS scores of 5, 6, or 7, respectively. For the clinical vignettes, the ocular staining test was expressed as the OSS ranging from 0 to 7 and above. A group of four ophthalmologists from France, the US, and the UK formed an ad-hoc working group that interpreted the analyses performed on the Paris-Sud data (ML and TML) and on the OMRF data (AR). Together, they derived the conversion algorithm between the OSS and the VBS described above. In addition, since the VBS of 4 (previously used in the AECG criteria) was equivalent to an OSS of 5, the group agreed to modify the OSS threshold to 5 in the new criteria set. This threshold has also been shown, as part of subsequent analyses of the SICCA data, to be more specific for diagnostic purposes than the previous score of 3 (data not shown).

Serological assays: including anti-SSA/B(Ro/La), ANA titers, RF, IgG, presence of complement C3 and C4.

Cohort PIs were each asked to provide a dataset that consisted of a random sample of 400 individuals with equal numbers of pSS cases and non-cases (using their own diagnostic definition), and without revealing case status in the dataset. The combined datasets thus comprised 1200 individuals with well-characterized data on the phenotypic features of SS. Clinical vignettes describing each individual’s relevant features in text form were computer-generated using a program written in R version 3.2.(31 ) Vignettes described each individual with respect to age, gender, reported symptoms, clinical signs, and provided test results including ANA titers, RF, IgG, C3, C4, anti-SSA(Ro), anti-SSB(La), OSS for each eye, Schirmer for each eye, whether or not the LSG biopsy revealed FLS, and a FS (supplemental Figure 1). Ocular symptoms were defined according to the AECG definition, as a positive response to at least one of the following questions: 1) Have you had daily, persistent, troublesome dry eyes for more than 3 months? 2) Do you have a recurrent sensation of sand or gravel in the eyes? 3) Do you use tear substitutes more than 3 times a day? Oral symptoms were defined as a positive response to at least one of the following questions: 1) Have you had a daily feeling of dry mouth for more than 3 months? 2) Do you frequently drink liquids to aid in swallowing dry food?
Publication 2016
Biological Assay Biopsy Complement 3 Diagnosis Dry Eye Eye Fluorescein Food Gender Lip Lymphocyte Ophthalmologists Phenotype Salivary Glands Sialadenitis Tears Vision Xerostomia
Unless otherwise noted, asexual planarians 1–5 mm in length were processed for WISH essentially as described [21 (link)] with the following significant modifications: the reduction step prior to dehydration was omitted. Bleaching was performed for 2 hours in formamide bleaching solution (1.2% H2O2, 5% formamide, and 0.5xSSC [32 ]). For regenerating planarians, the Proteinase K/post fixation steps were replaced with a 10 minute boiling step in 10 mM sodium citrate pH 6.0 with 0.05% Tween20, followed by a 20 minute room temperature incubation in PBSTx (Phosphate Buffered Saline [32 ], 0.3% Triton X-100) with 1% SDS. Blocking and antibody incubation for peroxidase-conjugated anti-digoxigenin (1:2,000 [Roche]), anti-fluorescein (1:2,000 [Roche]), and anti-dinitrophenol (1:300 [PerkinElmer]) were performed with 5% horse serum and 0.5% RWBR in TNTx (100 mM Tris pH 7.5, 150 mM NaCl, 0.3% Triton X-100). For chromogenic detection using alkaline phosphatase-conjugated anti-digoxigenin antibody (1:2,000 [Roche]), antibody incubation and blocking were performed with 5% horse serum in TNTx, and post-antibody washes were with TNTx prior to development as described in [21 (link)].
Full text: Click here
Publication 2013
Alkaline Phosphatase Antibodies, Anti-Idiotypic azo rubin S Dehydration Digoxigenin Dinitrophenols Endopeptidase K Equus caballus Fluorescein formamide Immunoglobulins Peroxidase Peroxide, Hydrogen Phosphates Planarians Saline Solution Serum Sodium Chloride Sodium Citrate Triton X-100 Tromethamine Tween 20
Electron microscopy, annexin V labeling, and DAPI staining were performed as described previously (Madeo et al., 1997 (link)). For the TdT-mediated dUTP nick end labeling (TUNEL) test, cells were prepared as described (Madeo et al., 1997 (link)), and the DNA ends were labeled using the In Situ Cell Death Detection Kit, POD (Boehringer Mannheim). Yeast cells were fixed with 3.7% formaldehyde, digested with lyticase, and applied to a polylysine-coated slide as described for immunofluorescence (Adams and Pringle, 1984 (link)). The slides were rinsed with PBS and incubated with 0.3% H2O2 in methanol for 30 min at room temperature to block endogenous peroxidases. The slides were rinsed with PBS, incubated in permeabilization solution (0.1% Triton X-100 and 0.1% sodium citrate) for 2 min on ice, rinsed twice with PBS, incubated with 10 μl TUNEL reaction mixture (terminal deoxynucleotidyl transferase 200 U/ml, FITC-labeled dUTP 10 mM, 25 mM Tris-HCl, 200 mM sodium cacodylate, 5 mM cobalt chloride; Boehringer Mannheim) for 60 min at 37°C, and then rinsed 3× with PBS. For the detection of peroxidase, cells were incubated with 10 μl Converter-POD (anti-FITC antibody, Fab fragment from sheep, conjugated with horseradish peroxidase) for 30 min at 37°C, rinsed 3× with PBS, and then stained with DAB-substrate solution (Boehringer Mannheim) for 10 min at room temperature. A coverslip was mounted with a drop of Kaiser's glycerol gelatin (Merck). As staining intensity varies, only samples from the same slide were compared.
Free intracellular radicals were detected with dihydrorhodamine 123, dichlorodihydrofluorescein diacetate (dichlorofluorescin diacetate), or dihydroethidium (hydroethidine; Sigma Chemical Co.). Dihydrorhodamine 123 was added ad-5 μg per ml of cell culture from a 2.5-mg/ml stock solution in ethanol and cells were viewed without further processing through a rhodamine optical filter after a 2-h incubation. Dichlorodihydrofluorescein diacetate was added ad-10 μg per ml of cell culture from a 2.5 mg/ml stock solution in ethanol and cells were viewed through a fluorescein optical filter after a 2-h incubation. Dihydroethidium was added ad-5 μg per ml of cell culture from a 5 mg/ml aqueous stock solution and cells were viewed through a rhodamine optical filter after a 10-min incubation. For flow cytometric analysis, cells were incubated with dihydrorhodamine 123 for 2 h and analyzed using a FACS® Calibur (Becton Dickinson) at low flow rate with excitation and emission settings of 488 and 525–550 nm (filter FL1), respectively.
Free spin trap reagents N-tert-butyl-α−phenylnitrone (PBN; Sigma-Aldrich) and 3,3,5,5,-tetramethyl-pyrroline N-oxide (TMPO; Sigma-Aldrich) were added directly to the cell cultures as 10-mg/ml aqueous stock solutions. Viability was determined as the portion of cell growing to visible colonies within 3 d.
To determine frequencies of morphological phenotypes (TUNEL, Annexin V, DAPI, dihydrorhodamine 123), at least 300 cells of three independent experiments were evaluated.
Publication 1999
3,3,5,5-tetramethyl-1-pyrroline N-oxide Annexin A5 Antibodies, Anti-Idiotypic Cacodylate Cardiac Arrest Cell Culture Techniques Cell Death Cells cobaltous chloride DAPI deoxyuridine triphosphate dichlorofluorescin dihydroethidium dihydrorhodamine 123 DNA Nucleotidylexotransferase Domestic Sheep Electron Microscopy Ethanol Flow Cytometry Fluorescein Fluorescein-5-isothiocyanate Formaldehyde Free Radicals Gelatins Glycerin Horseradish Peroxidase hydroethidine Immunofluorescence Immunoglobulins, Fab In Situ Nick-End Labeling lyticase Methanol Oxides Peroxidase Peroxidases Peroxide, Hydrogen Phenotype Polylysine Protoplasm pyrroline Rhodamine Sodium Sodium Citrate TERT protein, human Triton X-100 Tromethamine Yeast, Dried
Two flowers per day from anthesis, two and three days after pollination were fixed in 4% formaldehyde freshly prepared from paraformaldehyde in 1x phosphate saline buffer (PBS) pH7.3, left overnight at 4ºC, and conserved then at 0.1% formaldehyde solution [83 (link)]. Then the pistils were dehydrated in an acetone series (30%, 50%, 70%, 90%, 100%), and embedded in Technovit 8100 (Kulzer and Co, Germany) for two days. The resin was polymerized at 4ºC, and sectioned at 4 μm thickness. Sections were placed in a drop of water on a slide covered with 2% (3-Aminopropyl) triethoxysilane - APTEX (Sigma-Aldrich), and dried at room temperature. Callose was identified with the anticallose antibody (AntiCal) that recognises linear β-(1,3)-glucan segments (anti-β-(1,3)-glucan; immunoglobulin G1), Biosupplies, Australia [49 (link)]. As a secondary antibody, Alexa 488 fluorescein isothiocyanate (FITC)-conjugated anti-mouse IgG was used (F-1763; Sigma). Additionally, a monoclonal antibody (mAbs) JIM13 [84 (link)] against AGPs glycosyl epitopes, and one mAb JIM11 [85 (link)] against extensin epitopes were obtained from Carbosource Services (University of Georgia, USA). Secondary antibodies were anti-rat IgG conjugated with the same Alexa 488 used above. Sections were incubated for 5 min in PBS pH7.3 followed by 5% bovine serum albumin (BSA) in PBS for 5 min. Then, sections were incubated at room temperature for 1h with AntiCal primary mAb, JIM13, and JIM11. After that, three washes in PBS of 5 minutes each preceded the incubation for 45 min in the dark with a 1/25 diluted secondary fluorescein isothiocyanate (FITC) conjugated with the antibody in 1% BSA in PBS, followed by three washes in PBS [83 (link)]. Sections were counterstained with calcofluor white for cellulose [86 (link)], mounted in PBS or Mowiol, and examined under a LEICA DM2500 epifluorescence microscope connected to a LEICA DFC320 camera. Filters were 355/455 nm for calcofluor white and 470/525 nm for the Alexa 488 fluorescein label of the antibodies (White Level?=?255; Black Level = 0; ϒ?=?1). Exposur (Exp) times were adapted to the best compromise in overlapping photographs for each antibody: AntiCal, Exp.?=?15.30ms (Calcofluor Exp. = 1.20ms); JIM13 Exp.?=?2.52ms (Calcofluor?=?0.41ms); JIM11, Exp. = 31.59 ms (Calcofluor Exp. = 1.40ms). Brightness and contrasts were adjusted to obtain the sharpest images with the Leica Application Suite software.
Full text: Click here
Publication 2014
3-(triethoxysilyl)propylamine Acetone anti-IgG Antibodies Bos taurus Buffers calcofluor white callose Cellulose Contrast Media Epitopes Flowers Fluorescein Formaldehyde Formalin Glucans Immunoglobulins isothiocyanate Mice, House Microscopy Orosomucoid paraform Phosphates Pistil Pollination Resins, Plant Saline Solution Serum Albumin Serum Albumin, Bovine

Most recents protocols related to «Fluorescein»

Not available on PMC !

Example 2

About 5 μM fluorescein (F1300, Invitrogen, Carlsbad, CA) solution in ethanol was prepared. For imaging, the solution was transferred into a sealed 10 mm glass bottom dish (P35G-1.5-10-c, MatTek Corporation, Ashland, MA, USA) and mounted in an inverted confocal microscope. Imaging was performed on a Zeiss LSM780 inverted confocal microscope with QUASAR detector (Carl Zeiss, Jena, Germany). A typical dataset consists of 32 images, each of dimensions 512×512 pixels, corresponding to different wavelengths from about 410.5 nm to about 694.9 nm with about 8.9 nm bandwidth. The measurement is repeated 10 times using C-Apochromat 40×/1.20 W Korr Zeiss objective at any given imaging parameter. Fluorescein was imaged with about 488 nm laser at different acquisition parameters (Table 1).

For in vivo imaging 5-6 zebrafish embryos at appropriate stage were placed into about 1% agarose (Catalog No. 16500-100, Invitrogen™) moulds created in an imaging dish with #1.5 coverglass bottom, (Catalog No. D5040P, WillCo Wells) using a custom designed negative plastic mould [29]. Embryos were immobilized by adding about 2 ml of about 1% UltraPure™ Low Melting Point Agarose (Catalog No. 16520-050, Invitrogen™) solution prepared in about 30% Danieau (about 17.4 mM NaCl, about 210 μM KCl, about 120 μM MgSO4.7H2O, about 180 μM Ca(NO3)2, about 1.5 mM HEPES buffer in water, pH about 7.6) with about 0.003% PTU and about 0.01% tricaine. This solution was then added on top of the embryos already placed in the mold. Following solidification of agarose at room temperature (1-2 minutes), the imaging dish was filled with about 30% Danieau solution and about 0.01% Tricaine, at about 28.5° C. Subsequent imaging was performed on an inverted confocal microscope by positioning the petridish appropriately on the microscope stage. Samples were obtained by crossing Gt(desm-citrine)ct122a/+ with Tg(kdrl:eGFP) fish for two color imaging. Samples with four fluorescent proteins result from same crossing followed by injection of about 100 pg per embryo of mRNA encoding H2B-cerulean and membrane-mCherry. Samples of Gt(desm-citrine)ct122a/+;Tg(kdrl:eGFP) were imaged with about 488 nm laser to excite both Citrine and eGFP and a narrow about 488 nm dichroic to separate excitation and fluorescence emission. Samples of Gt(desm-citrine)ct122a/+;Tg(kdrl:eGFP) with H2B-cerulean and membrane-mCherry labels were imaged with about 458 nm laser to excite Cerulean, eGFP and Citrine with a narrow about 488 nm dichroic, following an about 561 nm laser to excite mCherry with an about 458-561 nm dichroic.

For in vivo time-lapse imaging 5-6 zebrafish at appropriate stage were immobilized in an imaging dish with #1.5 coverglass bottom using about 0.5% Low Melting Point Agarose agarose (same as above) to allow for development and with about 0.003% PTU and about 0.01% tricaine. Subsequent imaging was performed on the same confocal-two photon inverted microscope at about 28.5° C. A solution of Egg Water was added every hour to the imaging dish to ensure proper hydration of the sample. Samples with five fluorescent proteins were obtained by crossing Tg(kdrl: eGFP) with Tg(ubiq:membrane-Cerulean-2a-H2B-tdTomato) zebrafish followed by injection of about 120 pg and about 30 pg per embryo of mRNA encoding Rab9-YFP and Rab11-mCherry, respectively. Volumetric data was acquired using about 950 nm to excite Cerulean, eGFP, YFP and (weakly) tdTomato with a 760+ bandpass filter, following an about 561 nm laser to excite mCherry and tdTomato with an about 458-561 nm dichroic.

Table 3 provides the detailed description of the imaging parameters used for all images presented in this work.

Full text: Click here
Patent 2024
Buffers Embryo Ethanol Fishes Fluorescein Fluorescence Fungus, Filamentous HEPES Hyperostosis, Diffuse Idiopathic Skeletal Microscopy Microscopy, Confocal Proteins RNA, Messenger Sepharose Sodium Chloride Sulfate, Magnesium tdTomato Tissue, Membrane tricaine Zebrafish
Not available on PMC !

Example 2

In the following experiments, a mouse model of RVO, which induces reproducible retinal edema was used. RVO is the model that was used for testing anti-VEGF therapies for DME. Brown et al., Ophthalmology 117, 1124-1133 el 121 (2010); and Campochiaro et al., Ophthalmology 117, 1102-1112 e1101 (2010). I n this model, Rose Bengal, a photoactivatable dye, is injected into the tail veins of adult C57B16 mice and photoactivated by laser of retinal veins around the optic nerve head. A clot is formed and edema or increased retinal thickness develops rapidly. Inflammation, also seen in diabetes, also develops.

Fluorescein leakage and maximal retinal edema, measured by fluorescein angiography and optical coherence tomography (OCT), respectively, using the Phoenix Micron IV, is observed 24 h after RVO. Retinal edema is maintained over the first 3 days RVO. By day 4 the edema decreases and the retina subsequently thins out. In addition to edema formation there is evidence of cell death in the photoreceptor cell layer by day 2 after RVO.

In this example, mice were anesthetized with intra-peritoneal (IP) injection of ketamine and xylazine. One drop of 0.5% alcaine was added to the eye as topical anesthetic. The retina was imaged with the Phoenix Micron IV to choose veins for laser ablation using the Phoenix Micron IV image guided laser. One to four veins around the optic nerve head were ablated by delivering a laser pulse (power 50 mW, spot size 50 μm, duration 3 seconds) to each vein.

Full text: Click here
Patent 2024
Adult Alcaine Cell Death Clotrimazole Diabetes Mellitus Edema Fluorescein Fluorescein Angiography Inflammation Injections, Intraperitoneal Ketamine Laser Ablation Mus Neoplasm Metastasis Optic Disk Photoreceptor Cells Pulse Rate Retina Retinal Edema Rose Bengal Tail Tomography, Optical Coherence Topical Anesthetics Vascular Endothelial Growth Factors Veins Veins, Central Retinal Vision Xylazine

Example 3

Materials and Methods

Labeled siRNA (via attachment to fluorescein amidite, FAM) (1 nmole), or siRNA complexed with 3E10 (0.75 mg), was mixed at room temperature for 5 minutes. 200,000 K562 cells were then added to the suspension of 3E10, or siRNA alone, in serum free media. Additional serum free media was added to a final volume of 500 ul. Following incubation with cells at 37° C. for 24 hrs, the cells were centrifuged and washed three times with PBS prior to analysis by flow cytometry.

Results

The results are illustrated in flow cytometry dot plots (FIG. 3A-3C). % uptake was quantified (FIG. 3D).

The results show increased cell uptake of siRNA when mixed with 3E10.

Full text: Click here
Patent 2024
Cells Culture Media, Serum-Free Flow Cytometry Fluorescein K562 Cells RNA, Small Interfering
Not available on PMC !

Example 120

[Figure (not displayed)]

Fluorescein formamidine 173. 5-Aminofluorescein (172) (0.100 g, 0.29 mmol) and (chloromethylene)dimethylimminium chloride (0.135 g, 1.11 mmol) were stirred for 16 h in DMF (2 mL). The reaction mixture was evaporated, and the crude product was purified on a silica gel column (1.5×25 cm bed, packed with 10% H2O in MeCN), eluant: 10% H2O in MeCN to give amidine 173 (0.049 g, 42%) as a yellow solid.

Full text: Click here
Patent 2024
5-aminofluorescein Amidines Anabolism Chlorides Fluorescein formamidine Silica Gel

Example 1

Each of the peptides having amino acid sequences of SEQ ID NOS: 1, 2, and 3 mixed with a coating buffer (20 mM sodium phosphate, pH 9.6) at a concentration of 1.8 mM was seeded on a plate for an enzyme-linked immunosorbent assay (ELISA) and cultured at 4° C. overnight. Subsequently, the peptide was washed with phosphate buffered saline with Tween-20 (PBST) and blocked with 3% of bovine serum albumin (BSA) for 2 hours at room temperature. After washing with PBST, 2 μM of 2,3,7,8-tetrachlorodibenzo-p-dioxin (hereinafter, referred to as TCDD) was added to each well and cultured at room temperature for 2 hours. Subsequently, after washing with PBST, treatment with anti-TCDD antibody conjugated with fluorescein isothiocyanate (FITC) was conducted at a ratio of antibody:PBST=1:100 and the resultant was cultured for 2 hours at room temperature. Then, after washing with PBST, an excitation 488 nm/emission 520 nm value was measured using a fluorescence meter, and the results are shown in FIGS. 1A to 1C, and Table 2.

TABLE 2
SEQ ID NO:Control50 μM500 μM1000 μM2000 μM
1100%193%360%394%575%
2100%128%264%358%405%
3100%159%253%400%420%

As shown in FIGS. 1A to 1C and Table 2, it was confirmed that the peptide consisting of an amino acid sequence of SEQ ID NO: 1, 2, or 3 directly binds to TCDD.

Full text: Click here
Patent 2024
Amino Acid Sequence Biological Assay Enzyme-Linked Immunosorbent Assay Figs Fluorescein Fluorescence Immunoglobulins isothiocyanate Peptides Phosphates Saline Solution Serum Albumin, Bovine sodium phosphate Tetrachlorodibenzodioxin Tween 20

Top products related to «Fluorescein»

Sourced in United States, Germany, United Kingdom, China, Canada, Japan, Italy, France, Belgium, Switzerland, Singapore, Uruguay, Australia, Spain, Poland, India, Austria, Denmark, Netherlands, Jersey, Finland, Sweden
The FACSCalibur is a flow cytometry system designed for multi-parameter analysis of cells and other particles. It features a blue (488 nm) and a red (635 nm) laser for excitation of fluorescent dyes. The instrument is capable of detecting forward scatter, side scatter, and up to four fluorescent parameters simultaneously.
Sourced in United States, Germany, United Kingdom, China, Canada, Japan, Belgium, France, Spain, Italy, Australia, Finland, Poland, Switzerland, Cameroon, Uruguay, Denmark, Jersey, Moldova, Republic of, Singapore, India, Brazil
The FACSCalibur flow cytometer is a compact and versatile instrument designed for multiparameter analysis of cells and particles. It employs laser-based technology to rapidly measure and analyze the physical and fluorescent characteristics of cells or other particles as they flow in a fluid stream. The FACSCalibur can detect and quantify a wide range of cellular properties, making it a valuable tool for various applications in biology, immunology, and clinical research.
Sourced in United States, Germany, United Kingdom, Italy, Canada, China, Japan, Belgium, France, Spain, Switzerland, Poland, Uruguay, Denmark, Singapore
CellQuest software is a data acquisition and analysis software designed for flow cytometry applications. It provides tools for acquiring, processing, and analyzing flow cytometry data.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, India, Macao, Israel, Singapore, Switzerland, Senegal, Hungary, Brazil, Ireland, Australia, Japan, Czechia
FITC is a fluorescent dye used in various laboratory applications. It is a green-fluorescent dye that is commonly used for labeling and detecting biomolecules, such as proteins, antibodies, and nucleic acids. FITC emits light in the green region of the visible spectrum when excited by a suitable light source.
Sourced in United States, Germany, Japan, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, Canada, Switzerland, Spain, Australia, Denmark, India, Poland, Israel, Belgium, Sweden, Ireland, Netherlands, Panama, Brazil, Portugal, Czechia, Puerto Rico, Austria, Hong Kong, Singapore
DAPI is a fluorescent dye that binds strongly to adenine-thymine (A-T) rich regions in DNA. It is commonly used as a nuclear counterstain in fluorescence microscopy to visualize and locate cell nuclei.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Germany, United Kingdom, Belgium, China, Australia, France, Japan, Italy, Spain, Switzerland, Canada, Uruguay, Netherlands, Czechia, Jersey, Brazil, Denmark, Singapore, Austria, India, Panama
The FACSCanto II is a flow cytometer instrument designed for multi-parameter analysis of single cells. It features a solid-state diode laser and up to four fluorescence detectors for simultaneous measurement of multiple cellular parameters.
Sourced in United States, Germany, United Kingdom, China, Italy, Japan, France, Sao Tome and Principe, Canada, Macao, Spain, Switzerland, Australia, India, Israel, Belgium, Poland, Sweden, Denmark, Ireland, Hungary, Netherlands, Czechia, Brazil, Austria, Singapore, Portugal, Panama, Chile, Senegal, Morocco, Slovenia, New Zealand, Finland, Thailand, Uruguay, Argentina, Saudi Arabia, Romania, Greece, Mexico
Bovine serum albumin (BSA) is a common laboratory reagent derived from bovine blood plasma. It is a protein that serves as a stabilizer and blocking agent in various biochemical and immunological applications. BSA is widely used to maintain the activity and solubility of enzymes, proteins, and other biomolecules in experimental settings.
Sourced in United States, Germany, China, United Kingdom, Italy, Japan, Spain, France, Canada, Switzerland, Jersey, Macao
The FACScan is a flow cytometry instrument manufactured by BD. It is designed to analyze and sort cells or particles in a fluid stream. The FACScan uses laser technology to detect and measure the physical and fluorescent characteristics of individual cells or particles as they pass through the instrument's flow cell.

More about "Fluorescein"

Fluorescein is a versatile synthetic organic compound widely used in various fields, including biomedical research, ophthalmology, and environmental monitoring.
This highly fluorescent dye, also known as FITC (Fluorescein Isothiocyanate), has a wide range of applications.
In biomedical research, it is commonly used for cell labeling, flow cytometry, and fluorescence microscopy.
The FACSCalibur flow cytometer, paired with CellQuest software, is a powerful tool that utilizes Fluorescein and other fluorescent dyes like DAPI to analyze cell populations and their characteristics.
Fluorescein's ability to trace the flow of aqueous humor in the eye makes it invaluable in ophthalmology, helping diagnose and monitor various eye conditions.
In environmental studies, Fluorescein is used to detect groundwater movement and trace the flow of aqueous solutions, providing insights into hydrology and hydrogeology.
PubCompare.ai's AI-driven platform can optimize your Fluorescein research by helping you easily locate relevant protocols from literature, preprints, and patents.
The platform's AI-powered comparisons can also assist in identifying the best protocols and products, empowering you to take your Fluorescein research to new heights.
Discover new insights and advance your work with PubCompare.ai's intuitive tools, leveraging Fluorescein's versatility across diverse fields.
Explore the wide-ranging applications of Fluorescein, from biomedical studies utilizing FACSCalibur and FACSCanto II flow cytometers to environmental monitoring.
Enhance your research with the help of PubCompare.ai, and unlock the full potential of this remarkable fluorescent dye.
Remember to always use Bovine Serum Albumin (BSA) as a blocking agent when working with Fluorescein to minimize background noise and improve signal-to-noise ratio.