Pharmaceutical Preparations
This encompasses a wide range of products, including tablets, capsules, solutions, suspensions, and topical applications.
Effective pharmaceutical preparations require careful consideration of factors such as ingredient selection, manufacturing processes, stability, and dosing to ensure the safe and efficent delivery of the active pharmacuetical components.
Reserchers and manufacturers utilize advanced analytical tools and techniques to streamline the development of high-quality, reproducible pharmaceutical preparations tailored to specific therapeutic needs.
Experence the future of pharmaceutical reseach today with PubCompare.ai's AI-driven solutions for optimizing your preparatory protocols.
Most cited protocols related to «Pharmaceutical Preparations»
Short sequence reads from 23 isolates of five different species, Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Staphylococcus aureus and Vibrio cholerae, were also submitted to ResFinder. All 23 isolates had been sequenced on the Illumina platform using paired-end reads. A ResFinder threshold of ID = 98.00% was selected, as previous tests of ResFinder had shown that a threshold lower than this gives too much noise (e.g. fragments of genes). Phenotypic antimicrobial susceptibility testing was determined as MIC determinations, as previously described.8 (link)With ‘(chromosome and plasmid)(multi-drug or antimicrobial or antibiotic)(resistant or resistance) pathogen’ as search criteria, one isolate from each species with completely sequenced and assembled, and chromosome and plasmid data were collected from the NCBI Genomes database (
Most recents protocols related to «Pharmaceutical Preparations»
Example 12
As a proof of concept, the patient population of this study is patients that (1) have moderate to severe ulcerative colitis, regardless of extent, and (2) have had an insufficient response to a previous treatment, e.g., a conventional therapy (e.g., 5-ASA, corticosteroid, and/or immunosuppressant) or a FDA-approved treatment. In this placebo-controlled eight-week study, patients are randomized. All patient undergo a colonoscopy at the start of the study (baseline) and at week 8. Patients enrolled in the study are assessed for clinical status of disease by stool frequency, rectal bleeding, abdominal pain, physician's global assessment, and biomarker levels such as fecal calprotectin and hsCRP. The primary endpoint is a shift in endoscopy scores from Baseline to Week 8. Secondary and exploratory endpoints include safety and tolerability, change in rectal bleeding score, change in abdominal pain score, change in stool frequency, change in partial Mayo score, change in Mayo score, proportion of subjects achieving endoscopy remission, proportion of subjects achieving clinical remission, change in histology score, change in biomarkers of disease such as fecal calprotectin and hsCRP, level of adalimumab in the blood/tissue/stool, change in cytokine levels (e.g., TNFα, IL-6) in the blood and tissue.
For example, treatment for a patient that is diagnosed with ulcerative colitis is an ingestible device programmed to release a single bolus of a therapeutic agent, e.g., 40 mg adalimumab, in the cecum or proximal to the cecum. Prior to administration of the treatment, the patient is fasted overnight and is allowed to drink clear fluids. Four hours after swallowing the ingestible device, the patient can resume a normal diet. An ingestible device is swallowed at the same time each day. The ingestible device is not recovered.
In some embodiments, there may be two different ingestible devices: one including an induction dose (first 8 to 12 weeks) and a different ingestible device including a different dose or a different dosing interval.
In some examples, the ingestible device can include a mapping tool, which can be used after 8 to 12 weeks of induction therapy, to assess the response status (e.g., based on one or more of the following: drug level, drug antibody level, biomarker level, and mucosal healing status). Depending on the response status determined by the mapping tool, a subject may continue to receive an induction regimen or maintenance regimen of adalimumab.
In different clinical studies, the patients may be diagnosed with Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the cecum, or in both the cecum and transverse colon.
In different clinical studies, the patients may be diagnosed with illeocolonic Crohn's disease and the ingestible devices (including adalimumab) can be programmed to release adalimumab in the late jejunum or in the jejunum and transverse colon.
Example 4
Composition H was manufactured according to the following procedure:
- a) Specified amount of purified water was taken in a suitable container and specified quantity of docusate sodium was added and stirred continuously to obtain a solution.
- b) Sodium lauryl sulphate was added to the step (a) solution and stirred continuously to obtain a solution.
- c) Hydroxypropyl methyl cellulose was added to the step (b) solution and stirred continuously to obtain a solution.
- d) Mifepristone was added to the step (c) solution and stirred for 5 minutes to obtain Mifepristone dispersion.
- e) Mifepristone dispersion was homogenized using IKA's Ultra TURRAX® homogenizer at 1000 RPM for 15 minutes.
- f) The above homogenized mifepristone slurry was nano-sized in ball-mill chamber to obtain nano-suspension containing desired particle size of mifepristone. The particle size distribution was measured by using Mastersizer 3000 particle analyser.
- g) Specified quantities of the silicified microcrystalline cellulose and sodium starch glycolate were dispensed in a bowl and warmed to reach 28° C. to 30° C. temperature.
- h) The nano-sized mifepristone suspension according to step (f) was sprayed onto the warmed intra-granular material according to step (g). The sprayed granules were dried at a temperature of 50° C. to 65° C. and sieved through 30 number mesh sieve.
- i) Specified quantities of milled granules of step (h), sodium starch glycolate, microcrystalline cellulose, colloidal silicon dioxide and magnesium stearate were blended and compressed using tablet compression machine. The tablets according to step (i) were coated with suitable coating materials.
Example 19
The above silk solutions were transformed to a silk powder through lyophilization to remove bulk water and chopping to small pieces with a blender. pH was adjusted with sodium hydroxide. Low molecular weight silk (−25 kDa) was soluble while high molecular weight silk (−60 kDa) was not.
The lyophilized silk powder can be advantageous for enhanced storage control ranging from 10 days to 10 years depending on storage and shipment conditions. The lyophilized silk powder can also be used as a raw ingredient in the pharmaceutical, medical, consumer, and electronic markets. Additionally, lyophilized silk powder can be re-suspended in water, HFIP, or an organic solution following storage to create silk solutions of varying concentrations, including higher concentration solutions than those produced initially.
In an embodiment, aqueous pure silk fibroin-based protein fragment solutions of the present disclosure comprising 1%, 3%, and 5% silk by weight were each dispensed into a 1.8 L Lyoguard trays, respectively. All 3 trays were placed in a 12 ft2 lyophilizer and a single run performed. The product was frozen with a shelf temperature of ≤−40° C. and held for 2 hours. The compositions were then lyophilized at a shelf temperature of −20° C., with a 3 hour ramp and held for 20 hours, and subsequently dried at a temperature of 30° C., with a 5 hour ramp and held for about 34 hours. Trays were removed and stored at ambient conditions until further processing. Each of the resultant lyophilized silk fragment compositions were able to dissolve in aqueous solvent and organic solvent to reconstitute silk fragment solutions between 0.1 wt % and 8 wt %. Heating and mixing were not required but were used to accelerate the dissolving rate. All solutions were shelf-stable at ambient conditions.
In an embodiment, an aqueous pure silk fibroin-based protein fragment solution of the present disclosure, fabricated using a method of the present disclosure with a 30 minute boil, has a molecular weight of about 57 kDa, a polydispersity of about 1.6, inorganic and organic residuals of less than 500 ppm, and a light amber color.
In an embodiment, an aqueous pure silk fibroin-based protein fragment solution of the present disclosure, fabricated using a method of the present disclosure with a 60 minute boil, has a molecular weight of about 25 kDa, a polydispersity of about 2.4, inorganic and organic residuals of less than 500 ppm, and a light amber color.
Example 2
Dosage forms B and C were prepared as follows. 20 wt % acetaminophen drug particles were first mixed with the excipient, 80 wt % HPMC of molecular weight 120 kg/mol. The mixture was then combined with a solvent, either DMSO (for preparing dosage form B) or water (for dosage form C). The volume of solvent per mass of excipient was 5.5 ml/g and 3.33 ml/g, respectively, for preparing dosage forms B and C. The drug-excipient-solvent mixture was then extruded through a laboratory extruder to form a uniform viscous paste. The viscous paste was put in a syringe equipped with a hypodermic needle of inner radius, Rn=130 μm (for preparing dosage form B) or Rn 500 μm (for preparing dosage form C). The paste was then extruded through the needle and patterned as a fibrous dosage form with cross-ply arrangement of fibers. The nominal inter-fiber distance in a ply was uniform and equal to 730 μm (for preparing dosage form B) or 2800 μm (for preparing dosage form C). During and after patterning, warm air at a temperature of 60° C. and a velocity of about 2.3 m/s was blown over the fibrous dosage forms for a time, tdry˜40 minutes, to evaporate the solvent and freeze the structure. The process parameters to prepare the dosage forms are summarized in Table 1. After drying, the structure was trimmed to a square disk shaped dosage form of side length, L0˜8 mm. The thickness, H0, of the dosage forms B and C was about 3 mm.
Single fibers B and C were prepared as dosage forms B and C, but without structuring the fibrous extrudate to a dosage form.
Example 7
The MTT Cell Proliferation assay determines cell survival following apple stem cell extract treatment. The purpose was to evaluate the potential anti-tumor activity of apple stem cell extracts as well as to evaluate the dose-dependent cell cytotoxicity.
Principle: Treated cells are exposed to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT enters living cells and passes into the mitochondria where it is reduced by mitochondrial succinate dehydrogenase to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with DMSO and the released, solubilized formazan is measured spectrophotometrically. The MTT assay measures cell viability based on the generation of reducing equivalents. Reduction of MTT only occurs in metabolically active cells, so the level of activity is a measure of the viability of the cells. The percentage cell viability is calculated against untreated cells.
Method: A549 and NCI-H520 lung cancer cell lines and L132 lung epithelial cell line were used to determine the plant stem cell treatment tumor-specific cytotoxicity. The cell lines were maintained in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a 5% CO2 at 37 Celsius. Cells were seeded at 5×103 cells/well in 96-well plates and incubated for 48 hours. Triplicates of eight concentrations of the apple stem cell extract were added to the media and cells were incubated for 24 hours. This was followed by removal of media and subsequent washing with the phosphate saline solution. Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer Mannheim, Indianapolis, IN) New medium containing 50 μl of MTT solution (5 mg/ml) was added to each well and cultures were incubated a further 4 hours. Following this incubation, DMSO was added and the cell viability was determined by the absorbance at 570 nm by a microplate reader.
In order to determine the effectiveness of apple stem cell extracts as an anti-tumor biological agent, an MTT assay was carried out and IC50 values were calculated. IC50 is the half maximal inhibitory function concentration of a drug or compound required to inhibit a biological process. The measured process is cell death.
Results: ASC-Treated Human Lung Adenocarcinoma Cell Line A549.
Results: ASC-Treated Human Squamous Carcinoma Cell Line NCI-H520.
Results: ASC-treated Lung Epithelial Cell Line L132.
Summary Results: Cytotoxicity of Apple Stem Cell Extracts.
Apple stem cell extracts killed lung cancer cells lines A549 and NCI-H520 at relatively low doses: IC50s were 12.58 and 10.21 μg/ml respectively as compared to 127.46 μg/ml for the lung epithelial cell line L132. Near complete anti-tumor activity was seen at a dose of 250 μg/ml in both the lung cancer cell lines. This same dose spared more than one half of the L132 cells. See Tables 7-10. The data revealed that apple stem cell extract is cytotoxic to lung cancer cells while sparing lung epithelial cells.
Example 9
The experiment of Example 7 was repeated substituting other plant materials for ASC. Plant stem cell materials included Dandelion Root Extract (DRE), Aloe Vera Juice (AVJ), Apple Fiber Powder (AFP), Ginkgo Leaf Extract (GLE), Lingonberry Stem Cells (LSC), Orchid Stem Cells (OSC) as described in Examples 1 and 2. The concentrations of plant materials used were nominally 250, 100, 50, 25, 6.25, 3.125, 1.562, and 0.781 μg/mL. These materials were tested only for cells the human lung epithelial cell line L132 (as a proxy for normal epithelial cells) and for cells of the human lung adenocarcinoma cell line A549 (as a proxy for lung cancer cells).
A549 cells lung cancer cell line cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Cancer Cell Line A549 Cells.
AVJ-Treated Lung Cancer Cell line A549 Cells.
AFP-Treated Lung Cancer Cell line A549 Cells.
GLE-treated Lung Cancer Cell line A549 Cells.
LSC-treated lung cancer cell lines A549 cells.
OSC-treated Lung Cancer Cell line A549 Cells.
L132 cells (“normal” lung epithelial cell line) cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Epithelial Cell Line L132 cells.
AVJ-Treated Lung Epithelial Cell Line L132 cells.
AFP-Treated Lung Epithelial Cell Line L132 cells.
GLE-Treated Lung Epithelial Cell Line L132 cells.
LSC-Treated Lung Epithelial Cell Line L132 cells.
OSC-Treated Lung Epithelial Cell Line L132 cells.
Calculated values.
Top products related to «Pharmaceutical Preparations»
More about "Pharmaceutical Preparations"
Effective pharmaceutical preparations require careful consideration of various factors, such as ingredient selection, manufacturing processes, stability, and dosing, to ensure the safe and efficient delivery of active pharmaceutical components.
Researchers and manufacturers utilize advanced analytical tools and techniques, like those offered by PubCompare.ai, to streamline the development of high-quality, reproducible pharmaceutical preparations tailored to specific therapeutic needs.
These solutions leverage AI-driven comparisons to identify the most effective preparatory protocols from literature, preprints, and patents, optimizing processes and enhancing reproducibility.
In the pharmaceutical research and development landscape, various media and reagents play crucial roles.
For cell culture applications, DMEM, RPMI 1640, FBS, and Penicillin/Streptomycin are commonly used to support cell growth and maintenance.
Analytical techniques, such as the MTT assay, help assess cell viability and proliferation.
Lipofectamine 2000 is a popular transfection reagent for introducing genetic material into cells.
Beyond cell culture, solvents like DMSO and Methanol are employed in various stages of pharmaceutical development, from sample preparation to analytical testing.
Statistical software, such as SAS version 9.4, aids in the analysis and interpretation of research data, supporting the optimization of pharmaceutical preparations.
By leveraging cutting-edge tools and techniques, pharmaceutical researchers and manufacturers can experience the future of their field today, driving innovation and enhancing the quality, safety, and efficacy of therapeutic products.