In order to study the influence of operational factors on photoautotrophic cultivation of C. sorokiniana for accelerated growth and biomass production, microalga with an initial OD750 of 0.01 (optical density at 750 nm) was grown in a sterilized 3.6 L Labfors 4 Lux photobioreactor (Infors HT, Bottmingen, Switzerland) with a 2.4 L working volume with controlled luminous flux levels. The experiments were divided into three main groups: (1) cultivation under different photosynthetic photon flux density (PPFD) conditions, (2) cultivation at various levels of carbon dioxide, and (3) cultivation in the presence of various levels of nitrate and sulfate ions.
The photobioreactor was illuminated with 1–16 Gro-Lux tubes with high blue and red radiation (per tube: 120 lumen (lm), maximum: 1920 lm) uniformly distributed around the culture vessel. Light intensity was additionally measured using a photosynthetically active radiation meter (PAR meter, Apogee Instruments, Logan, UT, USA). In experiments on the selection of optimal lighting, we tested the growth of culture at different values of illumination. Three treatments were carried out under different PPFD conditions (1000, 1200, and 1400 μmol m−2 s−1). For an optimized strategy for the growth and the accumulation of biomass, we analyzed the following conditions of the carbon dioxide regimen: cultures sparged with atmospheric air only (~0.04% CO2) and cultures sparged simultaneously with atmospheric air and continuously added CO2 (finally 0.5%, 1.0%, and 2.0% CO2 (v/v)). Aeration (0.55 volume of air per volume of liquid per minute) was provided by a compressor via a 0.45 µm filter. Carbon dioxide addition was provided by thermal mass flow meter and controller (Vögtlin Instruments, Aesch, Switzerland). They were mixed and injected into the reactor. The temperature was controlled at +26–26.5 °C. A relatively low temperature was chosen in our experiments since high temperatures lead to higher control costs and higher energy consumption of the process. The reactor was continuously stirred at 120 rpm. In all experiments, light was maintained on a 16:8 light/dark cycle. When observing the foam, a sterile 2% v/v solution of antifoam (Antifoam B, Sigma-Aldrich, St. Louis, MO, USA) was added. The experiments continued in the range of 112–232 h. Light, temperature, medium pH, pressure inside the reactor, carbon dioxide flow, and the percentage of released oxygen and carbon dioxide were measured by the Infors devices and displayed online on a computer screen.
Samples for analysis of algal growth, cell number, pigment content, and ions concentration in the culture medium were collected every day. pH as well percentage of the released molecular oxygen and carbon dioxide were measured throughout the experiments. Two independent experiments were performed to test reproducibility, and the results are presented as the mean.
The photobioreactor was illuminated with 1–16 Gro-Lux tubes with high blue and red radiation (per tube: 120 lumen (lm), maximum: 1920 lm) uniformly distributed around the culture vessel. Light intensity was additionally measured using a photosynthetically active radiation meter (PAR meter, Apogee Instruments, Logan, UT, USA). In experiments on the selection of optimal lighting, we tested the growth of culture at different values of illumination. Three treatments were carried out under different PPFD conditions (1000, 1200, and 1400 μmol m−2 s−1). For an optimized strategy for the growth and the accumulation of biomass, we analyzed the following conditions of the carbon dioxide regimen: cultures sparged with atmospheric air only (~0.04% CO2) and cultures sparged simultaneously with atmospheric air and continuously added CO2 (finally 0.5%, 1.0%, and 2.0% CO2 (v/v)). Aeration (0.55 volume of air per volume of liquid per minute) was provided by a compressor via a 0.45 µm filter. Carbon dioxide addition was provided by thermal mass flow meter and controller (Vögtlin Instruments, Aesch, Switzerland). They were mixed and injected into the reactor. The temperature was controlled at +26–26.5 °C. A relatively low temperature was chosen in our experiments since high temperatures lead to higher control costs and higher energy consumption of the process. The reactor was continuously stirred at 120 rpm. In all experiments, light was maintained on a 16:8 light/dark cycle. When observing the foam, a sterile 2% v/v solution of antifoam (Antifoam B, Sigma-Aldrich, St. Louis, MO, USA) was added. The experiments continued in the range of 112–232 h. Light, temperature, medium pH, pressure inside the reactor, carbon dioxide flow, and the percentage of released oxygen and carbon dioxide were measured by the Infors devices and displayed online on a computer screen.
Samples for analysis of algal growth, cell number, pigment content, and ions concentration in the culture medium were collected every day. pH as well percentage of the released molecular oxygen and carbon dioxide were measured throughout the experiments. Two independent experiments were performed to test reproducibility, and the results are presented as the mean.
Full text: Click here