Other post-mortem data are collected as part of separately funded projects. For example, counts of neuritic plaques diffuse plaques, and neurofibrillary tangles based on silver stain from five brain regions are used to create a global measure of AD pathology [75 (link)]. Amyloid load and the density of paired helical filament tau (PHFtau) are determined in eight brain regions and summarized [86 (link)]. More recently we have started to quantify TDP-43 [90 (link)].
Senile Plaques
These plaques are a hallmark pathological feature and a key target for research into understanding and treating the disease.
PubCompare.ai's AI-powered platform provides researchers with the most effective protocols and insights to optimize their Senile Plaques studies, leveraing the latest literature, preprints, and patents to identify the best methods and products.
Streamline your research and discover new avenues for investigation with PubCompare.ai's user-friendly, data-driven tools.
Most cited protocols related to «Senile Plaques»
As an alternative to immuno-staining, in some experiments we revealed plaques as areas of destroyed cells. To this end, after removing the overlays, we stained the cells with 1% crystal violet solution in 20% methanol in water.
The average EOP value for a particular phage—bacterium combination was classified as “High production” when the ratio was 0.5 or more, i.e. when the productive infection on the target bacterium resulted in at least 50% of the PFU found for the primary host. An EOP of 0.1 or better, but below 0.5, was considered to be of “Medium production” efficiency, and between 0.001 and 0.1 as “Low production” efficiency. An EOP equal to or under 0.001 was classified as inefficient [34 (link)].
Most recents protocols related to «Senile Plaques»
Example 3
Investigation of Virus Infectivity as a Factor that Determines Plaque Size.
With the revelation that plaque formation is strongly influenced by the immunogenicity of the virus, the possibility that infectivity of the virus could be another factor that determines plaque sizes was investigated. The uptake of viruses into cells in vitro was determined by measuring the amounts of specific viral RNA sequences through real-time PCR.
To measure total viral RNA, total cellular RNA was extracted using the RNEasy Mini kit (Qiagen), and complementary DNA synthesized using the iScript cDNA Synthesis kit (Bio-Rad). To measure total viral RNA, quantitative real-time PCR was done using a primer pair targeting a highly conserved region of the 3′ UTR common to all four serotypes of dengue; inter-sample normalization was done using GAPDH as a control. Primer sequences are listed in Table 5. Pronase (Roche) was used at a concentration of 1 mg/mL and incubated with infected cells for five minutes on ice, before washing with ice cold PBS. Total cellular RNA was then extracted from the cell pellets in the manner described above.
The proportion of infected cells was assessed by flow cytometry. Cells were fixed and permeabilised with 3% paraformaldehyde and 0.1% saponin, respectively. DENV envelope (E) protein was stained with mouse monoclonal 4G2 antibody (ATCC) and AlexaFluor488 anti-mouse secondary antibody. Flow cytometry analysis was done on a BD FACS Canto II (BD Bioscience).
Unexpectedly, despite DENV-2 PDK53 inducing stronger antiviral immune responses, it had higher rates of uptake by HuH-7 cells compared to DENV-2 16681 (
Results above demonstrate that the DENV-2 PDK53 and DENV-3 PGMK30 are polarized in their properties that influence plaque morphologies. While both attenuated strains were selected for their formation of smaller plaques compared to their parental strains, the factors leading to this outcome are different between the two.
Accordingly, this study has demonstrated that successfully attenuated vaccines, as exemplified by DENV-2 PDK53 in this study, form smaller plaques due to induction of strong innate immune responses, which is triggered by fast viral uptake and spread of infection. In contrast, DENV-3 PGMK30 form smaller plaques due to its slower uptake and growth in host cells, which inadvertently causes lower up-regulation of the innate immune response.
Based on the results presented in the foregoing Examples, the present invention provides a new strategy to prepare a LAV, which expedites the production process and ensures the generation of effectively attenuated viruses fit for vaccine use.
Example 56
Escherichia coli Nissle 1917 (E. coli Nissle) and engineered derivatives test positive for a low level presence of phage 3 in a validated bacteriophage plaque assay. Bacteriophage plaque assays were conducted to determine presence and levels of bacteriophage. In brief, supernatants from cultures of test bacteria that were grown overnight were mixed with a phage-sensitive indicator strain and plated in soft agar to detect the formation of plaques, indicative of the presence of bacteriophage. Polymerase chain reaction (PCR) primers were designed to detect the three different endogenous prophages identified in the bioinformatics analyses, and were used to assess plaques for the presence of phage-specific DNA.
Example 3
Bifidobacterium breve M-16V (NITE BP-02622) is added to 3 mL of an MRS liquid medium and is anaerobically cultured at 37° C. for 16 hours, and the culture liquid is concentrated, followed by lyophilization, to obtain a lyophilized powder of the bacterium (bacterial powder). Next, crystalline cellulose is put in an agitation granulator and mixed. Then, purified water was added, followed by granulation. The granulated product is dried to obtain granules that contain an extracted component of the bacterium and an excipient. By administering the composition, modulation of palatability, maintenance of body temperature, and protection of a blood vessel can be expected. Furthermore, the composition can be used for preventing or treating unbalanced diet, sensitivity to cold, hypothermia, myocardial infarction, ischemia-reperfusion injury, cardiac hypertrophy, diabetic cardiomyopathy, arteriosclerosis, or vascular plaque formation.
Example 2
Bifidobacterium breve M-16V (NITE BP-02622) is added to 3 mL of an MRS liquid medium and is anaerobically cultured at 37° C. for 16 hours and the culture liquid is concentrated, followed by lyophilization, to obtain a lyophilized powder of the bacterium (bacterial powder). The bacterial powder and a dry powder of a milk protein concentrate (MPC480, manufactured by Fonterra, protein content: 80% by mass, casein: whey protein=about 8:2) are uniformly mixed to obtain a composition. 20 g of the composition is diluted in 200 g of water to obtain a composition for promoting the secretion of FGF21. By administering the composition, modulation of palatability, maintenance of body temperature, and protection of a blood vessel can be expected. Furthermore, the composition can be used for preventing or treating unbalanced diet, sensitivity to cold, hypothermia, myocardial infarction, ischemia-reperfusion injury, cardiac hypertrophy, diabetic cardiomyopathy, arteriosclerosis, or vascular plaque formation.
Of the cohort members, 409 of them had detectable extracranial carotid plaques (CP). The study randomly selected 309 CP-positive individuals as the case group. The control group was a random sample of 439 individuals who had no detectable extracranial carotid plaque. The study complied with the 1975 Helsinki Declaration on ethics in medical research and were reviewed and approved by the institutional review boards of MacKay Medical College (No. P990001) and MacKay Memorial Hospital (No. 14MMHIS075).
Top products related to «Senile Plaques»
More about "Senile Plaques"
These extracellular deposits of amyloid-beta peptide accumulate in the brains of individuals with the neurodegenerative disorder.
Understanding and treating Senile Plaques is a key focus of Alzheimer's research.
PubCompare.ai's AI-powered platform provides researchers with the most effective protocols and insights to optimize their studies on Senile Plaques.
By leveraging the latest literature, preprints, and patents, the platform helps identify the best methods and products for investigating these amyloid deposits.
Streamlining your Senile Plaques research is made possible with PubCompare.ai's user-friendly, data-driven tools.
These can assist in locating and comparing protocols from various sources, including scientific publications, preprint servers, and patent databases.
This allows researchers to discover new avenues for investigation and enhance their experimental design.
Beyond Senile Plaques, PubCompare.ai's insights can also be applied to other related topics, such as Crystal violet staining, fetal bovine serum (FBS), Dulbecco's Modified Eagle Medium (DMEM), Methylcellulose, Vero E6 cells, Penicillin/streptomycin, SeaPlaque agarose, Neutral red, Minimum Essential Medium (MEM), and Carboxymethylcellulose.
By leveraging these complementary techniques and materials, researchers can gain a more comprehensive understanding of the underlying mechanisms and potential treatments for Alzheimer's disease.