Patients orally agreed to the use of their data in the present study. Ethical approval for this retrospective study was obtained from the Institutional Review Board of the Zhongshan Ophthalmic Centre (approval no. 2022KYPJ173). In total, 180 participants(mean age, 64.12±8.87 years; range, 52-75 years) were recruited in this study, including 109 males and 71 females. All participants underwent ICGA (SPECTRALIS Diagnostic Imaging Platform; Heidelberg Engineering, Inc.) and optical coherence tomography (OCT) (SPECTRALIS
® OCT; Heidelberg Engineering Inc.) between January 2018 and January 2022 at the Zhongshan Ophthalmic Centre, Guangzhou, China.
The present study included 63 patients with PCV, 50 with AMD and 67 healthy control group. Based on the results of fundus examination, OCT, fundus fluorescein angiography (FFA) and ICGA, age- and sex-matched patients were grouped based on diagnosis into PCV, AMD and healthy control group. Only one eye was included for patients diagnosed with bilateral PCV or AMD. In healthy participants, only the eye with the best-corrected visual acuity (>20/16) was included.
The following exclusion criteria were adopted: History of prior ocular surgery or trauma(excluded 15 PCV patients); severe vitreous haemorrhage that may affect imaging examination (excluded two PCV patients); any systemic disease that may affect blood flow, such as diabetes mellitus or hypertension (excluded one PCV patients and three AMD patients); central serous chorioretinopathy (CSC); primary glaucoma; optic neuritis; retinal vein occlusion; choroidal melanoma; retinal vasculitis; uveitis; an epiretinal membrane that may affect ocular circulation (excluded one PCV patients and five AMD patients) or moderate to high myopia (defined as a spherical equivalent refractive error in phakic eyes <-3.00 D) (excluded nine healthy participants).
We conducted another screening to exclude the cases who only received monocular ICGA and OCT examination and included 44 cases of unilateral PCV and 18 cases of unilateral AMD. The diseased eye was included in the PCV/AMD group, and the healthy fellow eye was included in the PCV/AMD fellow eye group.
Following intravenous injection of 5 ml 25 mg ICG (Dandong Yichuang Pharmaceutical Co., Ltd), ICGA images were recorded. Early-stage images (5 min after dye injection) were selected for analysis. The vortex veins were separated into four categories according to a previous method (8 (
link)). The branches of type I vortex veins do not converge and pass directly through the sclera, whereas all branches of type IV (complete with ampulla) converge to form the ampulla, which is a complete vortex system. Type IV systems have a larger root area due to the dilated ampulla (8 (
link)). The fundus was divided into four quadrants: Superior and inferior temporal and superior and inferior nasal. Patient characteristics, such as sex, age, number, location and type of vortex veins were recorded. The sketching tool of the retinal device was used to mark the root area and diameter of the thickest branch of each vortex vein (
Fig. 1). The centre of a concentric circle was placed on the macula, the thickest vortex vein branch intersecting with the outermost circle was selected and its diameter was measured and stored as the central vortex vein diameter (CVVD). The ends of each vortex vein branch were connected with a smooth curve and the area enclosed by the curve was defined as the root area of the vortex vein (RAVV). The width of the thickest first-order branch of the vortex vein was defined as the diameter of the peripheral thickest branch (DPTB). The mean RAVV (MRAVV) and MDPTB were calculated. Vortex vein anastomosis was observed when vortex vein branches connected the two vortex vein systems on IGCA. The percentage of eyes with vortex vein anastomosis in each group was calculated and recorded as the percentage of vortex vein anastomosis (PVVA). Subfoveal choroidal thickness (SFCT) was measured using SPECTRALIS
® OCT device. All labelling was performed separately by two experienced ophthalmologists (CXC and XMX) and the mean of the two measurements was used as the final data.
Cai C.X., Xiong X.M., Li T., Liu B.Q., Huang X.H., Yu S.S., Lin Z.Q., Wang Q., Cui J.L., Lu L, & Lin Y. (2023). Vortex vein engorgement and different shapes of venous drainage systems in polypoid choroidal vasculopathy vs. age‑related macular degeneration on indocyanine green angiography. Experimental and Therapeutic Medicine, 25(4), 162.