The largest database of trusted experimental protocols
> Disorders > Cell or Molecular Dysfunction > Deletion Mutation

Deletion Mutation

Deletion Mutation Analysis: Uncover Insights with PubCompare.ai's AI-Powered Tools.
Explore the power of deletion mutations and unlock new research avenues.
PubCompare.ai's cutting-edge platform enables intelligent comparisons of literature, pre-prints, and patents to discover the optimal protocols and products.
Empower your research and gain valuable insights through this innovative solution.
Get started today and unlcok the full potential of your deletion mutation analysis.

Most cited protocols related to «Deletion Mutation»

All protein interaction data sets from MIPS [13 (link)], Gene Ontology [43 (link)] and PreBIND were collected as described previously [6 (link)]. The YPD protein interaction data are from March 2001 and were originally requested from Proteome, Inc. . Other interaction data sets are from BIND . A BIND yeast import utility was developed to integrate data from SGD [12 (link)], RefSeq [44 (link)], Gene Registry , the list of essential genes from the yeast deletion consortium [11 (link)] and GO terms [43 (link)]. This database ensures proper matching of yeast gene names among the multiple data sets that may use different names for the same genes. The yeast proteome used here is defined by SGD and RefSeq and contains 6,334 ORFs including the mitochondrial chromosome. Before performing comparisons, the various interaction data sets were entered into a local instance of BIND as pairwise protein interaction records. The MIPS complex catalogue was downloaded in February 2002.
The protein interaction data sets used here were composed as follows. 'Gavin Spoke' is the spoke model of the raw purifications from Gavin et al [7 (link)]. 'Y2H' is all known large-scale [2 (link)-5 (link),10 (link)] combined with normal yeast two-hybrid results from MIPS. 'HTP Only' is only high-throughput or large-scale data [2 (link)-7 (link),10 (link)] The 'Benchmark' set was constructed from MIPS, YPD and PreBIND as previously described [6 (link)]. 'Pre HTMS' was composed of all yeast sets except the recent large-scale mass spectrometry data sets [6 (link),7 (link)]. 'AllYeast' was the combination of all above data sets. All data sets are non-redundant.
Publication 2003
Deletion Mutation DNA, Mitochondrial Genes Genes, Essential Hybrids Macrophage Inflammatory Protein-1 Mass Spectrometry Open Reading Frames Proteins Proteome Saccharomyces cerevisiae SET protein, human
The server requires a multiple sequence alignment of proteins and the corresponding DNA sequences as input. The internal action of the program can be divided into three main steps: (i) upload the protein sequence alignment and DNA sequences, (ii) reverse translation, i.e. conversion of the protein sequences into the corresponding DNA sequences in the form of regular expression patterns and (iii) generation of the codon alignment. In the second step, each protein sequence is converted into DNA sequence of a regular expression. For example, a short peptide sequence, MDP, is reverse-translated into a regular expression pattern of the DNA sequence as (A(U∣T)G)(GA(U∣T∣C∣Y))(CC.). For frame shifts, we adapted the notation used in GeneWise (6 (link)): if an insertion or deletion is found in the coding region, it is represented by the number of nucleic acid residues at that site instead of an amino acid code. For example, M2P indicates that there is 1 nt deletion between methionine and proline. With this notation, it is easy to convert the peptide sequence into a regular expression pattern, in this case (A(U∣T)G)..(CC.). After converting into a regular expression pattern, the input DNA sequence is searched with the pattern to obtain the corresponding coding region. Unmatched DNA sequence regions are discarded. The pattern matching has been designed to be tolerant of mismatches. This was achieved by extending 10 amino acid regular expression matches in both directions until the entire coding region of the input DNA sequence is covered. The regions between the extended fragments and those not covered by the extension are taken as mismatches, and reported, if any, in the output. In the third step, the protein sequence alignment is converted into the corresponding codon alignment by replacing each amino acid residue with the corresponding codon sequence.
Publication 2006
Amino Acids Amino Acid Sequence Codon Deletion Mutation DNA Sequence Exons Methionine Nucleic Acids Peptides Proline Proteins Reading Frames Sequence Alignment
Database of Interacting Proteins used in this study is from DIP database ([18 (link)])(http://dip.doe-mbi.ucla.edu, version: 20140117). Essential protein lists are collected from Saccharomyces Genome Deletion Project (SGDP) [19 ] and Saccharomyces Genome Database (SGD) [20 (link)]. The protein ID match table from Uniprot ID to NCBI gene id is downloaded from Uniprot ftp site.
The PPI network is loaded to cytoscape and calculated by 11 methods using cytoHubba plugin. Precision of each method is estimated by the performance of the method to include essential proteins in the top × ranked list (x = 10, 20, 30 ..... 100) by Precision:
Precision=thenumberofessentialproteinsthenumberofproteinsintop×rankedproteins
Publication 2014
Deletion Mutation Genes Genome Proteins Receptor Activator of Nuclear Factor-kappa B Saccharomyces
A VCF file (Fig. 1a) consists of a header section and a data section. The header contains an arbitrary number of meta-information lines, each starting with characters ‘##’, and a TAB delimited field definition line, starting with a single ‘#’ character. The meta-information header lines provide a standardized description of tags and annotations used in the data section. The use of meta-information allows the information stored within a VCF file to be tailored to the dataset in question. It can be also used to provide information about the means of file creation, date of creation, version of the reference sequence, software used and any other information relevant to the history of the file. The field definition line names eight mandatory columns, corresponding to data columns representing the chromosome (CHROM), a 1-based position of the start of the variant (POS), unique identifiers of the variant (ID), the reference allele (REF), a comma separated list of alternate non-reference alleles (ALT), a phred-scaled quality score (QUAL), site filtering information (FILTER) and a semicolon separated list of additional, user extensible annotation (INFO). In addition, if samples are present in the file, the mandatory header columns are followed by a FORMAT column and an arbitrary number of sample IDs that define the samples included in the VCF file. The FORMAT column is used to define the information contained within each subsequent genotype column, which consists of a colon separated list of fields. For example, the FORMAT field GT:GQ:DP in the fourth data entry of Figure 1a indicates that the subsequent entries contain information regarding the genotype, genotype quality and read depth for each sample. All data lines are TAB delimited and the number of fields in each data line must match the number of fields in the header line. It is strongly recommended that all annotation tags used are declared in the VCF header section.

(a) Example of valid VCF. The header lines ##fileformat and #CHROM are mandatory, the rest is optional but strongly recommended. Each line of the body describes variants present in the sampled population at one genomic position or region. All alternate alleles are listed in the ALT column and referenced from the genotype fields as 1-based indexes to this list; the reference haplotype is designated as 0. For multiploid data, the separator indicates whether the data are phased (|) or unphased (/). Thus, the two alleles C and G at the positions 2 and 5 in this figure occur on the same chromosome in SAMPLE1. The first data line shows an example of a deletion (present in SAMPLE1) and a replacement of two bases by another base (SAMPLE2); the second line shows a SNP and an insertion; the third a SNP; the fourth a large structural variant described by the annotation in the INFO column, the coordinate is that of the base before the variant. (bf) Alignments and VCF representations of different sequence variants: SNP, insertion, deletion, replacement, and a large deletion. The REF columns shows the reference bases replaced by the haplotype in the ALT column. The coordinate refers to the first reference base. (g) Users are advised to use simplest representation possible and lowest coordinate in cases where the position is ambiguous.

Publication 2011
Alleles Character Chromosomes Colon Deletion Mutation Genetic Diversity Genome Genotype Haplotypes Human Body
ANNOVAR is a command-line driven software tool and can be used as a standalone application on diverse hardware systems where standard Perl modules are installed. ANNOVAR is open-source, and is freely available at http://www.openbioinformatics.org/annovar/ to the academic community. ANNOVAR takes text-based input files, where each line corresponds to one genetic variant, including SNVs, insertions, deletions or block substitutions. In each line, the first five space- or tab- delimited columns represent chromosome, start position, end position, the reference nucleotide(s) and the observed nucleotide(s). For chromosome positions, ANNOVAR can handle 1-based coordinate system (by default) and half-open zero-based coordinate system (via the use of ‘–zerostart’ argument). Additional columns can be supplied and will be printed out in identical form in output files. For convenience, users can use ‘0’ to fill in the reference nucleotides, if this information is not readily available. Insertions, deletions or block substitutions can be readily represented by this simple file format, by using ‘–’ to represent a null nucleotide. One example is given in Table 1, with extra columns that serve as comments on the variants.

Example of an input file with five genetic variants

ChromosomeStartEndRefObsComments
164930342749303427CTR702W (NOD2)
164932127949321279Cc.3016_3017insC (NOD2)
131966168519661685G35delG (GJB2)
11052937541052937550ATAAABlock substitution
11313388013133881TC2-bp deletion (rs59770105)
In Table 1, the first variant is a SNV, with a substitution of C in the reference genome to T. The second variant is a single-base insertion, since the reference nucleotide in the reference genome is represented by ‘−’. The third variant is a single-base deletion, with the observed nucleotide being represented by ‘−’. The fourth variant is a block substitution, but the reference allele is represented by ‘0’, eliminating the need to provide this allele explicitly on this line. The last variant is a deletion that spans several nucleotides.
Publication 2010
Alleles Chromosomes Deletion Mutation Gene Deletion Genetic Diversity Genome Nucleotides Reproduction

Most recents protocols related to «Deletion Mutation»

Example 3

Deletion of novel candidate immunotherapy targets was found to increase sensitivity of tumor cells to immunotherapy. sgRNAs targeting genes involved in dsRNA editing, sensing, and/or metabolism (e.g., Adar) were markedly depleted in mice treated with GVAX and PD-1 blockade (FIG. 2) relative to growth in TCRα−/− mice. In many cases, multiple members of the same pathway or even the same multi-protein complex were depleted under immune selective pressure, underscoring the importance of diverse biological pathways, such as the dsRNA editing, sensing, and/or metabolism pathway (FIGS. 3-7).

Patent 2024
Candidate Gene Identification Cells Deletion Mutation Figs Genes Hypersensitivity Immunotherapy Metabolism Mus Neoplasms Pressure Proteins RNA, Double-Stranded

Example 5

We studied the effect of CH25H KO in AD pathogenesis. SgRNAs targeting CH25H were designed with sgRNA1 being SEQ ID NO: 1 and sg RNA2 being SEQ ID NO: 2. See FIGS. 12A and 12B. With the two sg RNAs, CH25H gene were knocked out by crisper/cas9 method so that 46 base pairs (bp) were deleted in the exon of CH25H genes (see FIG. 12C), resulting in CH25H knockout (KO) mice.

In the CH25H KO mice, the deletion of the 46 bp fragment of CH25H gene was detected with the 488 bp band being the deleted CH25H gene and the 534 bp being the wild-type gene. The expression of CH25H mRNA in the CH25H KO mice was significantly reduced (FIG. 12E).

Once crossed to 5XFAD mice, the CH25H KO showed similar phenotype to STAT1 KO. Aβ was greatly reduced in both immunostaining and Elisa quantification (FIGS. 13A, 13B and 13C, respectively). Conversely, mice injected with 25-OHC had significant high amount of Aβ (FIGS. 11A, 11B and 11C).

To test the effect of reduced Aβ on cognitive abilities, the mice were examined by watermaze. 5XFAD mice gradually learned to locate the platform underneath the water, while the CH25H KO mice took significantly (p<0.05) less time to find the platform, indicating they performed better in learning and memory task (FIG. 14).

Patent 2024
Cognition Deletion Mutation Enzyme-Linked Immunosorbent Assay Exons Genes Memory Mice, Knockout Mice, Laboratory pathogenesis Phenotype RNA RNA, Messenger STAT1 protein, human

Example 4

ASOs also are being evaluated therapeutically for another form of muscle disease, Duchenne muscular dystrophy (DMD), to modify dystrophin pre-mRNA splicing directly by inducing skipping of a target exon to restore the open reading frame and produce a truncated, partially functional protein27, 28. Detection of therapeutic drug effects in DMD patients involves multiple muscle biopsies to examine splicing outcomes and dystrophin protein production. To test whether biofluid exRNA contains DMD deletion transcripts, we examined urine from several subjects with DMD and found patient-specific DMD deletion transcripts (FIGS. 6A and B), suggesting this biofluid exRNA is a viable approach to monitor therapeutic exon-skipping ASO drug effects in DMD patients as personalized genetic markers27, 28.

Patent 2024
Biopsy Deletion Mutation Exons Figs Homo sapiens mRNA Precursor Muscle Tissue Muscular Dystrophy, Duchenne Myopathy Patients Pharmaceutical Preparations Proteins Substance Abuse Detection Therapeutic Effect Therapeutics Urine
Not available on PMC !

Example 7

The anti-GD2 CAR was co-expressed with the RQR8 sort-suicide gene. (FIG. 9a—the CAR was in the format of Fc-spacer, CD28Z chosen arbitrarily to demonstrate function). It was possible to co-express receptor and CAR (FIG. 9b). Activation of the suicide gene function of RQR8 with Rituximab and complement resulted in deletion of transduced T-cells and loss of GD2 recognition (FIGS. 9c and d).

Patent 2024
Deletion Mutation Figs Gene Activation Gene Expression Genes Rituximab T-Lymphocyte
Not available on PMC !

Example 6

The iCasp9 suicide gene was co-expressed with the anti-GD2 CAR (FIG. 8a—the CAR was in the format of Fc-spacer, CD28OXZ chosen arbitrarily to demonstrate function). The CAR could be well-expressed despite co-expression with iCasp9 (FIG. 8b). Activation of iCasp9 with the small molecular dimerizer led to deletion of CAR positive T-cells (FIG. 8b). iCasp9-GD2CAR T-cells exposed to this dimerizer lost their GD2 specificity when exposed to the dimerizer (FIG. 8c).

Patent 2024
Deletion Mutation Gene Expression Genes T-Lymphocyte

Top products related to «Deletion Mutation»

Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.
Sourced in United States, Germany, Sao Tome and Principe, United Kingdom, Switzerland, Macao, China, Australia, Canada, Japan, Spain, Belgium, France, Italy, New Zealand, Denmark
Tamoxifen is a drug used in the treatment of certain types of cancer, primarily breast cancer. It is a selective estrogen receptor modulator (SERM) that can act as both an agonist and antagonist of the estrogen receptor. Tamoxifen is used to treat and prevent breast cancer in both men and women.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, Germany, United Kingdom, Switzerland, Japan, France, Italy, Spain, Austria, Australia, Hong Kong, Finland
The Dual-Luciferase Reporter Assay System is a laboratory tool designed to measure and compare the activity of two different luciferase reporter genes simultaneously. The system provides a quantitative method for analyzing gene expression and regulation in transfected or transduced cells.
Sourced in United States, China, Germany, Japan, United Kingdom, France, Canada, Italy, Australia, Switzerland, Denmark, Spain, Singapore, Belgium, Lithuania, Israel, Sweden, Austria, Moldova, Republic of, Greece, Azerbaijan, Finland
Lipofectamine 3000 is a transfection reagent used for the efficient delivery of nucleic acids, such as plasmid DNA, siRNA, and mRNA, into a variety of mammalian cell types. It facilitates the entry of these molecules into the cells, enabling their expression or silencing.
Sourced in United States, China, Germany, Japan, United Kingdom, France
The PGL3-basic vector is a plasmid designed for routine cloning and reporter gene expression experiments. It provides a basic backbone for inserting genes of interest and evaluating their expression in various cell lines. The vector contains a multiple cloning site for gene insertion and a luciferase reporter gene for downstream analysis.
Sourced in United States, United Kingdom, Germany, China, Canada, Singapore, Japan, Morocco, France
The Q5 Site-Directed Mutagenesis Kit is a laboratory tool designed for introducing precise mutations into DNA sequences. It provides a streamlined workflow for generating site-specific changes in plasmid or linear DNA templates.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, Montenegro, Germany, United Kingdom, Japan, China, Canada, Australia, France, Colombia, Netherlands, Spain
C57BL/6J is a mouse strain commonly used in biomedical research. It is a common inbred mouse strain that has been extensively characterized.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.

More about "Deletion Mutation"

Deletion mutations are a type of genetic variation where a section of DNA is removed or lost, leading to changes in the genetic sequence.
These mutations can have significant impacts on gene function and expression, making them an important area of study in various fields of biology and medicine.
One key aspect of deletion mutation analysis is the use of cutting-edge tools and techniques to identify and characterize these genetic alterations.
PubCompare.ai's AI-powered platform enables researchers to explore the power of deletion mutation analysis, unlocking new research avenues through intelligent comparisons of literature, preprints, and patents.
Researchers can leverage PubCompare.ai's tools to discover the optimal protocols and products for their deletion mutation analysis, empowering their work and gaining valuable insights.
This can include the use of techniques like Lipofectamine 2000 for transfection, Tamoxifen for gene regulation, and the Dual-Luciferase Reporter Assay System for measuring gene expression.
Other important considerations in deletion mutation analysis include the use of cell culture media like FBS, the application of site-directed mutagenesis kits like the Q5 kit, and the incorporation of antibiotics such as Penicillin/streptomycin to maintain cell health.
Animal models, such as the C57BL/6J mouse strain, can also play a crucial role in studying the biological effects of deletion mutations.
By exploring the power of deletion mutation analysis and utilizing the cutting-edge tools and techniques available, researchers can unlock new discoveries and advance our understanding of the genetic mechanisms underlying various biological processes and diseases.
PubCompare.ai's innovative solution is the perfect starting point for this exciting journey of scientific exploration and discovery.