Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Example 20
Fertility—Progesterone is one of the most important hormones for pregnancy with myriad functions from ensuring implantation of the egg into a healthy uterine wall, to ensuring embryo survival and prevention of immune rejection of the developing baby. Many other hormones act in concert with progesterone, like Follicular Stimulating Hormone (FSH) and Luteinizing Hormone (LH) and can be used to assess optimal fertility windows on a monthly basis. And in fact an over dominant production of estrogen can lead to progesterone deficiency and thus difficulty getting or staying pregnant. It is important that women not only monitor FSH and LH to determine optimal fertility for getting pregnant, but ensure that sufficient levels or progesterone are being produced to ensure pregnancy and viability of the fetus. A study from the British Medical Journal, 2012, demonstrated that a single progesterone level test can help discriminate between viable and nonviable pregnancies. Among women who had an ultrasound, 73 percent had nonviable pregnancies. But among women with progesterone levels below 3 to 6 nanograms per milliliter, the probability of a nonviable pregnancy rose to more than 99 percent (Gallos L et al. British Medical J, 2012).
Perimenopause—Monitoring hormone levels during the menopausal transition may help women better understand important changes in their body and allow them to make more informed decisions about health, diet, and lifestyle. According to Hale G E (Best Pract Res Clin Obstet Gynaecol, 2009), data from endocrine studies on women throughout the menopausal transition show changes in levels of steroid hormones and gonadotropins (Progesterone, Estrodiol, LH, FSH and AMH) and follicle-stimulating hormone undergoes the first detectable change while menstrual cycles remain regular. Erratic and less predictable changes in steroid hormones follow, especially with the onset of irregular cycles. Later serum hormone studies on the inhibins and anti-Mullerian hormone established that diminishing ovarian follicle number contributes to the endocrine changes with advancing reproductive age.
Many fertility issues revolve around genetic, anatomical or other disorders that may either prevent a woman from becoming pregnant and/or staying pregnant. Some of these disorders include hormonal imbalances, diabetes, a short or insufficient cervix, and acute or chronic infections. A cascade of genes has been implicated in the occurrence of getting and staying pregnant. These genes have been studied using genotyping, gene expression, and proteomic analysis to assess a woman's ability to stay pregnant.
In some embodiments the disclosed device focuses on detecting levels of Progesterone, LH, FSH, Estrodiol, AMH, genotyping, gene expression through RNA and methylome sequencing, qPCR and proteomic analysis for fertility and menopause management from menstrual blood or cervicovaginal fluid.
Example 51
The NOD SCID gamma mouse model of chronic, asymptomatic C. parvum infection was used to test in vivo compound efficacy. NOD SCID gamma mice were infected with ˜1×105 C. parvum oocysts by oral gavage 5-7 days after weaning. The infected animals begin shedding oocysts in the feces 1 week after infection, which is measured by quantitative PCR (qPCR). Based on experience with the positive control compound paromomycin, four mice are required per experimental group to achieve 80% power to detect an 80% percent reduction in parasite shedding after four days of drug compound. In additional to the experimental drug regimen groups, additional negative (gavage with DMSO/methylcellulose carrier) and positive (paromomycin 2000 mg/kg once daily) control groups are included in each experiment. Mice are infected 5-7 days after weaning (day −6), infection is confirmed 1 week later (day 0), and experimental compounds are dosed by oral gavage on days 1-4. The dosing frequency was as indicated. Treatment efficacy was assessed by measurement of fecal oocyst shedding by qPCR on day 5.