Vital registration with medical certification of cause of death is a crucial resource for the GBD cause of death analysis in many countries. Cause of death data obtained using various revisions of the International Classification of Diseases and Injuries (ICD)9 were mapped to the GBD cause list. Many deaths, however, are assigned to causes that cannot be the underlying cause of death (eg, cardiopulmonary failure) or are inadequately specified (eg, injury from undetermined intent). These deaths were reassigned to the most probable underlying causes of death as part of the data processing for GBD. Redistribution algorithms can be divided into three categories: proportionate redistribution, fixed proportion redistribution based on published studies or expert judgment, or statistical algorithms. For GBD 2019, data for 116 million deaths attributed to multiple causes were analysed to produce more empirical redistribution algorithms for sepsis,10 (link) heart failure, pulmonary embolism, acute kidney injury, hepatic failure, acute respiratory failure, pneumonitis, and five intermediate causes (hydrocephalus, toxic encephalopathy, compression of brain, encephalopathy, and cerebral oedema) in the central nervous system. To redistribute unspecified injuries, we used a method similar to that of intermediate cause redistribution, using the pattern of the nature of injury codes in the causal chain where the ICD codes X59 (“exposure to unspecified factor”) and Y34 (“unspecified event, undetermined intent”) and GBD injury causes were the underlying cause of death. These new algorithms led to important changes in the causes to which these intermediate outcomes were redistributed. Additionally, data on deaths from diabetes and stroke lack the detail on subtype in many countries; we ran regressions on vital registration data with at least 50% of deaths coded specifically to type 1 or 2 diabetes and ischaemic, haemorrhagic, or subarachnoid stroke to predict deaths by these subtypes when these were coded to unspecified diabetes or stroke.
Full text: Click here