Figure 1 presents the case and control selection process. Study subjects were initially selected from a population of singleton births between 1982 and 1999 with AF samples available as part of the Historic Birth Cohort (HBC) stored at the Statens Serum Institute (SSI) in Copenhagen, Denmark [47 (link)]. The HBC is based on a collection of antenatal biological samples obtained during screening/diagnostic procedures performed mainly in three Danish regions. The collection of samples goes from the late 1970s until 2004 and includes more than 100,000 samples of AF, bloodspots, and maternal serum samples (Fig. 1 ) [14 (link), 48 (link)]. The AF samples from the HBC were centrifuged after routine screening or diagnostic amniocentesis, and samples were kept frozen at − 20 °C until further analyzed [49 (link)]. The Danish nation-wide health registers were employed to follow-up individuals in the HBC until 2009. All psychiatric diagnoses were identified utilizing the Danish Psychiatric Central Register (DPCR) which has high diagnosis validity of infantile autism diagnoses [50 (link)]. All singleton ASD cases born during 1982–1999 were identified according to the International Classification of Diseases (ICD)-8 codes 299.xx up to 1993 and ICD-10 codes DF84.xx since 1994. Furthermore, the Danish National Hospital Register (DNHR) primary diagnoses [51 (link)] were applied to complement diagnoses of congenital malformations and other psychiatric comorbidities. The birth record data of the study subjects were retrieved from the Danish medical birth registry [52 (link)]. The controls were non-ASD individuals randomly retrieved from the HBC and frequency-matched with cases on gender and year of birth [47 (link)].![]()
The present study aims to examine whether EDCs in AF influence individuals diagnostics with ASD later in life using the case-control design. We first performed a pilot study on pooled AF to establish methods for the EDC-receptor function analyses and measurement of POPs such as PCBs, OCPs, and PFAS as well as elements including heavy metals. The pilot study showed that the levels of lipophilic POPs (PCBs, OCPs, dioxins, PBDEs) in AF samples were below the detection limits while PFAS, elements/metals, and AF-induced combined receptor transactivities could be detected in AF samples. Therefore, 1032 individual AF samples including 332 ASD cases and 700 controls were obtained from the SSI and stored at − 20 °C in Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark, for the determination of PFAS, elements, and the combined ex vivo receptor transactivities (ER, AR, AhR, and TH). Since many parameters had to be determined in each AF sample, the first selection of samples was based on available samples having adequate volume. AF samples of ASD cases and controls with adequate volume were thus selected and frequency-matched by gender and year of birth. Due to the possible influence of maternal age on ASD, the ASD cases and controls were further matched by maternal age with approximately 1:2 case-control match (Fig. 1 ).
Changes in concentrations of analytes over prolonged times are a known issue [53 ], and the way the samples were stored pre- and post-1993 was different. Baron-Cohen reported the evidence of evaporation and the concentrations of various analytes of pre-1993 samples were higher than those of post-1993 samples [14 (link)]. In addition, after 1993, the timing of amniocentesis in Denmark was standardized using ultrasound to mark gestational age and diagnostic information after 1993 became much more reliable by switching to ICD-10 [50 (link), 54 (link)]. Therefore, the present study was restricted to individuals born between 1993 and 1999. However, several samples were stored in tubes with blue rubber caps containing cell toxic compounds affecting cell culture growth. Those samples were excluded from the present study. Finally, 75 ASD cases (62 boys, 13 girls) and 135 frequency-matched controls (109 boys, 26 girls) born during 1995–1999 with adequate AF volume were included in the study (Fig.1 ).
Flow chart of autism disorders (ASD) and controls selection process
Changes in concentrations of analytes over prolonged times are a known issue [53 ], and the way the samples were stored pre- and post-1993 was different. Baron-Cohen reported the evidence of evaporation and the concentrations of various analytes of pre-1993 samples were higher than those of post-1993 samples [14 (link)]. In addition, after 1993, the timing of amniocentesis in Denmark was standardized using ultrasound to mark gestational age and diagnostic information after 1993 became much more reliable by switching to ICD-10 [50 (link), 54 (link)]. Therefore, the present study was restricted to individuals born between 1993 and 1999. However, several samples were stored in tubes with blue rubber caps containing cell toxic compounds affecting cell culture growth. Those samples were excluded from the present study. Finally, 75 ASD cases (62 boys, 13 girls) and 135 frequency-matched controls (109 boys, 26 girls) born during 1995–1999 with adequate AF volume were included in the study (Fig.
Full text: Click here