Adequate data for preparing national estimates were available for 31 pathogens. We estimated the number of foodborne illnesses, hospitalizations, and deaths caused by these 31 domestically acquired pathogens by using data shown in Table A1 and Technical Appendix 1 .
Data were mostly from 2000–2008, and all estimates were based on the US population in 2006 (299 million persons). Estimates were derived from statistical models with many inputs, each with some measure of uncertainty (5 (link)). To reflect this uncertainty, we used probability distributions to describe a range of plausible values for all model inputs. We expressed model outputs as probability distributions summarized by a mean point estimate with 90% credible intervals (CrIs). We used 2 types of modeling approaches for different types of data: 1) models that began with counts of laboratory-confirmed illnesses and were adjusted for undercounts (because of underreporting and underdiagnosis) and thus scaled up to the estimated number of illnesses and 2) models that began with a US population and used incidence data to scale down to the estimated number of illnesses (Table 1 ). The modeling approaches used and parameters of these probability distributions are detailed in Technical Appendix 2 and Technical Appendix 3 ; the proportions cited are modal values.
Data were mostly from 2000–2008, and all estimates were based on the US population in 2006 (299 million persons). Estimates were derived from statistical models with many inputs, each with some measure of uncertainty (5 (link)). To reflect this uncertainty, we used probability distributions to describe a range of plausible values for all model inputs. We expressed model outputs as probability distributions summarized by a mean point estimate with 90% credible intervals (CrIs). We used 2 types of modeling approaches for different types of data: 1) models that began with counts of laboratory-confirmed illnesses and were adjusted for undercounts (because of underreporting and underdiagnosis) and thus scaled up to the estimated number of illnesses and 2) models that began with a US population and used incidence data to scale down to the estimated number of illnesses (
Full text: Click here