Submersion
This can occur in various situations, such as swimming, diving, or accidental drowning.
Submersion can lead to respiratory distress, hypothermia, and other life-threatening conditions if not addressed promptly.
It is an important concept in fields such as emergency medicine, water safety, and aquatic sports.
Proper precautions and training are essential to prevent and manage submersion-related incidents and their potentail consequences.
Most cited protocols related to «Submersion»
Images were collected at 15 Hz (512 × 512 pixels, 250 μm × 250 μm;
Most recents protocols related to «Submersion»
Example 12
There has been a growing interest in the fabrication of nanofibers derived from natural polymers due to their ability to mimic the structure and function of extracellular matrix. Electrospinning is a simple technique to obtain nano-micro fibers with customized fiber topology and composition (
The current study aimed to improve and maintain nano-fibrous and porous structure of the electrospun membranes by introducing a new post electrospinning chemical treatment. Membrane thickness was tripled in this research in order to increase the general tearing strength. Scanning electron micrograph (SEM) examination (
Chitosan membranes treated by TEA/tboc showed better nano-fiber morphology characteristics than membranes neutralized by saturated Na2CO3 solution before and after being soaked in PBS. Retention of the nanofibrous structure for guided tissue regeneration applications may be of benefit for enabling nutrient exchange between soft gingival tissue and bone compartments and for mimicking the natural nanofibrillar components of the extracellular matrix during regeneration.
Example 22
To a four-necked flask (1 L volume) equipped with stirring blades, a thermometer, a dropping funnel and a condenser tube, 500 mL of toluene, 30.6 g (0.11 mol) of 4,4′-(propane-2,2-diyl)bis(isocyanate-benzene), and 63.1 mg of p-methoxyphenol were added and dissolved. Next, 14.3 g (0.11 mol) of 2-hydroxyethyl methacrylate was weighed in a beaker, 150 mL of toluene was added, and the mixture was stirred thoroughly and transferred to a dropping funnel. The four-necked flask was immersed in an oil bath heated to 80° C., and 2-hydroxyethyl methacrylate was added dropwise with stirring. After completion of the dropwise addition, the reaction was continued while maintaining the temperature of an oil bath for 24 hours, leading to aging. After completion of the aging, the four-necked flask was removed from the oil bath and the reaction product was returned to room temperature, and then HPLC and FT-IR measurements were performed. Analysis conditions of the HPLC measurement are as follows: a column of ZORBAX-ODS, acetonitrile/distilled water of 7/3, a flow rate of 0.5 mL/min, a multi-scanning UV detector, an RI detector and an MS detector. The FT-IR measurement was performed by an ATR method. As a result of the HPLC measurement, the raw materials 4,4′-(propane-2,2-diyl)bis(isocyanate-benzene) and 2-hydroxyethyl methacrylate disappeared and a new peak of 2-(((4-(2-(4-isocyanate-phenyl)propane-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate (molecular weight 408.45) was confirmed. As a result of FT-IR measurement, a decrease in isocyanate absorption intensity at 2280-2250 cm−1 and a disappearance of hydroxy group absorption near 3300 cm−1 were confirmed, and a new absorption attributed to urethane group at 1250 cm−1 was confirmed. Next, to a toluene solution containing 40.8 g (0.10 mol) of the precursor compound synthesized in the above procedure, 22.2 g (0.10 mol) of 3-(triethoxysilyl)propan-1-ol was added dropwise with stirring. The reaction was performed with the immersion in an oil bath heated to 80° C. in the same way as in the first step. After completion of the dropwise addition, the reaction was continued for 24 hours, leading to aging. After completion of the aging, HPLC and FT-IR measurements were performed. As a result of the HPLC measurement, the peaks of the raw materials 2-(((4-(2-(4-isocyanate-phenyl)propane-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate and 3-(triethoxysilyl)propan-1-ol disappeared and 2-(((4-(2-(4-(((3-(triethoxysilyl)propoxy)carbonyl)amino)phenyl)propan-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate (molecular weight 630.81) was confirmed. As a result of FT-IR measurement, a disappearance of isocyanate absorption at 2280-2250 cm−1 and a disappearance of hydroxy group absorption near 3300 cm−1 were confirmed. The chemical structure formula of the compound synthesized in this synthetic example are described below.
Example 6
Complex Em3-i:
A suspension of 2.1 g of Em3-s in 2000 ml of acetonitrile is irradiated with a moderate-pressure mercury immersion lamp at room temperature for 8 h (TQ150 with Duran sheath). Subsequently, the solvent is removed under reduced pressure. The residue was stirred twice with acetone and filtered. 1.6 g of Em3-i were obtained as a yellow powder (76%).
1H NMR (CD2Cl2, 500 MHz):
δ=0.68 (d, 3H), 0.75 (d, 3H), 0.82 (d, 3H), 0.96 (d, 3H), 0.99 (d, 3H), 1.05 (d, 3H), 1.13 (d, 3H), 1.20 (d, 3H), 1.24 (d, 3H), 1.60 (d, 3H), 1.79 (sept, 1H), 2.42 (sept, 1H), 2.51 (sept, 1H), 2.76 (sept, 1H), 4.56 (sept, 1H), 6.10 (dd, 2H), 6.30-6.35 (m, 1H), 6.38-6.45 (m, 2H), 6.53 (d, 1H), 6.61 (dd, 1H), 6.68 (d, 1H), 6.73 (d, 1H), 6.74-6.78 (m, 2H), 6.79 (d, 1H), 6.96 (dd, 1H), 7.07-7.15 (m, 1H), 7.19 (d, 1H), 7.22 (d, 1H), 7.27-7.34 (m, 3H), 7.47 (dd, 1H), 7.49 (dd, 1H), 7.66-7.72 (m, 2H), 8.34 (d, 1H), 8.40 (d, 1H).
Photoluminescence (in a film, 2% in PMMA):
λmax=456, 487 nm, CIE: (0.19; 0.32)
The photoluminescence quantum yield of the isomer Em3-i is 1.21 times the quantum yield of the isomer Em3-s.
Example 4
Bioactivity testing (ability to precipitate hydroxyapatite) was carried out on sample 2 using a simulated body fluid test.
This is an industry standard test to demonstrate that a material is bioactive. This test is widely accepted to demonstrate that a material which is bioactive in simulated body fluid would, once in the body, be able to form bone on its surface. This is an essential property for bone substitute materials.
The structure of the unreacted sample 2 shows silica spheres forming a bioactive aerogel structure.
This data demonstrates that the bone graft substitutes of the present invention are bioactive and exhibit low densities and high surface areas, compared to typically used bones graft substitutes.
Example 1
5 mg of oxidized CNT (MWCNT, average size: 12 nm×10 μm) are dispersed in 60 ml of Tris-HCl 10 mM in water (pH 8.5). The solution is ultra-sonicated until good dispersion is observed (about 1 minute). Dopamine hydrochloride (DA) is then added to reach a concentration of 0.1 mg/ml and the dispersion is stirred during 24 hours (h) at room temperature.
Example 6
Pda-coated CNT obtained according to the 2nd coating protocol were dispersed in a 50%/50% (by volume) mixture of water and ethanol so as to arrive at a CNT concentration of 0.5 mg/ml. The dispersion was sprayed on a glass substrate heated at 70° C. The number of sprayed layers was 50.
Example 13
The pda-coated CNT layer of example 6 was used to test electroless deposition. The sample was immersed in an electroless deposition solution during the desired time. The electroless solution contained glyoxilic acid (0.2 M) as reducing agent, EDTA (Ethylenediaminetetraacetic acid, 0.03 M) and CuSO4 (0.03 M). The solution was heated to between 50 and 60° C. and the pH was adjusted to 12-12.5 using NaOH. The immersion of the sample in the electroless solution led to delamination of the CNT layer from the glass substrate, probably due to H2 bubbles trapped between the CNT layer and the substrate. Although relatively fragile, the CNT layer conserved its cohesion and kept floating in the solution. When the CNT layer was progressively filled by copper, it turned became a more and more stable Cu-CNT composite (
It may be worthwhile noting that delamination is not a necessary process step but it may be used to produce very thin CNT tissues. The ampacity of the composite of example 13 was slightly increased compared to copper foil in same conditions (about 8·104 A/cm2). Although this was not tested, it is expected that using CNT coated with pda containing copper seeds would improve the copper filling with the electroless deposition technique.
Example 14
125 ml of tannic acid (0.01 mg/ml)+CuSO4·5H2O (0.6 mg/ml) were prepared in water. 20 mg of oxidized CNT were added to 50 ml of this solution. The dispersion was periodically ultra-sonicated while adding tannic acid CuSO4 solution until a volume of 125 ml was reached. The dispersion was then periodically ultra-sonicated during 20 minutes. 75 ml of Tris-HCl solution (10 mM) was added and periodical ultra-sonications were carried out during 30 minutes. The pH was adjusted to a value ranging from 11 to 12 and the coated CNT were filtrated.
Example 15
The metal-ion-seeded coated CNT of example 14 were dispersed in 40 ml ethanol/water mixture (50%/50% by volume) so as to arrive at a concentration of 0.5 mg/ml. The dispersion was then sprayed in several layers on a on a Si—TaN (10 nm)-Ta (15 nm)-Cu (150 nm) substrate using the Paasche VL series airbrush (distance from the substrate about 15 cm. The substrate temperature was 90° C. The resulting sprayed layer (
Example 16
The CNT layer of example 15 was subjected to electroplating in an aqueous 0.1 M CuSO4 solution (at room temperature). The pH was adjusted to 1 by addition of H2SO4. During the electroplating (potential: −0.2 V vs SCE, duration: 30 minutes) the solution was stirred. The resulting composite (
While specific embodiments have been described herein in detail, those skilled in the art will appreciate that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalents thereof.
Top products related to «Submersion»
More about "Submersion"
This can occur in various situations, such as swimming, diving, or accidental incidents.
Submersion can lead to respiratory distress, hypothermia, and other life-threatening conditions if not addressed promptly.
It is an important concept in fields such as emergency medicine, water safety, and aquatic sports.
Proper precautions and training are essential to prevent and manage submersion-related incidents and their potential consequences.
Effective water safety measures, such as the use of life jackets, can help minimize the risk of submersion accidents.
Additionally, understanding the principles of submersion and its effects on the body can aid in the development of appropriate emergency response protocols and treatment strategies.
In the context of scientific research, submersion may be a relevant topic in fields like underwater exploration, marine biology, and aquatic ecology.
Specialized equipment like the LSM 710, LSM 880, LSM 780, and SP8 confocal microscopes can be used to study the effects of submersion on living organisms or materials.
These advanced imaging tools, coupled with software like DAPI and ZEN, can provide valuable insights into the mechanisms and consequences of submersion.
By addressing the key aspects of submersion, including its causes, effects, and management strategies, researchers and practitioners can enhance their understanding of this important concept and develop more effective approaches to prevent and mitigate submersion-related incidents and their potential consequences.
Typo: Effectve water safety measures, such as the use of life jackets, can help minimize the risk of submersion accidents.