The largest database of trusted experimental protocols
> Disorders > Mental or Behavioral Dysfunction > Adjustment Disorders

Adjustment Disorders

Adjustment Disorders: A group of conditions characterized by the development of emotional or behavioral symptoms in response to an identifiable stressful life event or change.
These disorders may impair social, occupational, or other important areas of functioning and can be acute or chronic in nature.
Effective research tools, like PubCompare.ai's AI-driven solution, can enhance the reproducibility and accuracy of Adjustment Disorders studies by helping researchers easily locate relevant protocols from literature, preprints, and patents, and use powerful comparison tools to identify the best protocols and products for their needs.
Improve the quality and impact of your Adjustment Disorders research with PubCompare.ai.

Most cited protocols related to «Adjustment Disorders»

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2015
Adjustment Disorders Buffers Cell-Derived Microparticles Cells Crossbreeding DNA, Complementary DNA Chips exodeoxyribonuclease I Hypersensitivity Kinetics Microchip Analytical Devices Oligonucleotide Primers RNA-Directed DNA Polymerase
We are using a blunt-end ligation procedure to add barcoded, truncated adapter to the fragmented end-repaired DNA (Stiller et al. 2009 (link)). Specifically, one of the two truncated partially double-stranded adapters includes a 6-mer molecular barcode that is directly ligated to the blunted and 5′-phosphorylated DNA fragments and is therefore detected in the first six cycles of the first sequencing read. Because the adapters are not 5′-phosphorylated (to prevent adapter dimer formation and to reduce cost), a nick fill-in-step has to be performed before enrichment PCR, which then completes the truncated adapter sites so that the libraries can be sequenced (Fig. 2A). This PCR finishes the library preparation for the two WGS applications, but not for hybrid selection. For hybrid selection, we have modified the protocol so that the enrichment PCR (to complete the adapter to full length) is performed after hybrid capture, since we have found that the long adapters interfere with hybrid capture (see Supplemental Notes, “Influence of Adapter Length in Pooled Hybrid Capture”). No indexing read is needed to read out the internal barcode, but because cluster identification is performed in these cycles in the Illumina technology, care has to be taken to equally balance the four nucleotides at any of the six positions within the barcodes that will be sequenced together. Reaction conditions and overviews about the procedure can be found in Figures 1 and 2A (Supplemental Notes, “Sample Barcoding”) and Supplemental Figures S1, S3, and S4.
Publication 2012
Adjustment Disorders DNA Library Hybrids Ligation Nucleotides
Leaf tissues were first dried in silica gel. Ten milligrams of each of the dried tissues was rubbed for one minute at a frequency of 30 times/second in a FastPrep bead mill (Retsch MM400, Germany). DNA extractions were performed using the Plant Genomic DNA Kit (Tiangen Biotech Co., China) according to the manufacturer's instructions. The sequences of the universal primers for the DNA barcode to be tested, including those for psbA-trnH, matK, rbcL, rpoC1, ycf5 and ITS, and general PCR reaction conditions were obtained from previous studies [9] (link), [17] (link), [18] (link), [21] (link). Based on the conserved regions of 18S and 5.8S, we designed four pairs of primers for ITS1. Similarly, according to a previous study [25] (link) and the conserved regions of 5.8S and 26S, we also designed four pairs of primers for ITS2. PCR amplification was performed in 25-µl reaction mixtures containing approximately 30 ng of genomic DNA template, 1 X PCR buffer without MgCl2, 2.0 mM MgCl2, 0.2 mM of each dNTP, 0.1 µM of each primer (synthesized by Sangon Co., China) and 1.0 U Taq DNA Polymerase (Biocolor BioScience & Technology Co., China), with a Peltier Thermal Cycler PTC0200 (BioRad Lab, Inc., USA). Purified PCR products were sequenced in both directions with the primers used for PCR amplification on a 3730XL sequencer (Applied Biosystems, USA). To estimate the quality of the generated sequence traces, the original forward and reverse sequences were assembled using CodonCode Aligner 3.0 (CodonCode Co., USA). Base calling was carried out using the Phred program (version no. 0.020425.c). The quality values were defined for three levels: low quality (0 to 19 QV), medium quality (20 to 30 QV) and high quality (higher than 30 QV). The sequences showing >2 bases with a quality value below 20 QV in a 20-base window were trimmed. The forward and reverse reads have a minimum length of 100 bp, a minimum average QV of 30, and the post-trim lengths should be >50% of the original read length. In addition, the assembled contig should have a minimum average QV score of 40 and >50% overlap in the alignment of the forward and reverse reads. All sequences of the second set of plant samples containing the “internal transcribed spacer 2”or “psbA-trnH” were retrieved according to Keller et al. [42] (link) and GenBank annotations. Subsequences marked as ITS2 or psbA-trnH intergenic spacer were recovered after deleting sequences with ambiguous nucleotides and those shorter than 100 bp.
Full text: Click here
Publication 2010
Adjustment Disorders BP 100 Buffers DNA, Plant Genome Magnesium Chloride MATK protein, human Nucleotides Oligonucleotide Primers Plant Leaves Plants Silica Gel Taq Polymerase Tissues
A stoichiometric matrix, S (m × n), was constructed for iAF1260, where m is the number of metabolites and n is the number of reactions. The corresponding entry in the stoichiometric matrix, Sij, represents the stoichiometric coefficient for the participation of the ith metabolite in the jth reaction. FBA was then used to solve the linear programming problem under steady-state criteria (Price et al, 2004 (link)) represented by the equation:

where v (n × 1) is a vector of reaction fluxes. Since the linear problem is normally an underdetermined system for genome-scale metabolic models, there exist multiple solutions for v that satisfy equation 2. To find a particular solution for v, the cellular objective of producing the maximal amount of biomass constituents, represented by the ratio of metabolites in the BOF, is optimized for in the linear system. Additionally, constraints that are imposed on the system are in the form of:

where α and β are the lower and upper limits placed on each reaction flux, vi, respectively. For reversible reactions, −∞⩽vi⩽∞, and for irreversible reactions, 0⩽vi⩽∞. The constraints on the reactions that allow metabolite entry into the extracellular space were set to 0⩽vi⩽∞ if the metabolite was not present in the medium, meaning that the compounds could leave, but not enter the system. For the metabolites that were in the medium, the constraints were set to −∞⩽vi⩽∞ for all except the limiting substrate(s) (e.g., glucose and/or oxygen). The reaction flux through the BOF was constrained from 0⩽vBOF⩽∞.
Linear programming calculations were performed using SimPheny™ (Genomatica, San Diego, CA) and the LINDO (Lindo Systems Inc., Chicago, IL) or TOMLAB (Tomlab Optimization Inc., San Diego, CA) solvers in MATLAB® (The MathWorks Inc., Natick, MA) with the COBRA Toolbox (Becker et al, 2007 (link)).
When comparing the flux distribution in central metabolism to experimentally reported values (Fischer et al, 2004 (link)), all of the comparisons were performed using computational results when optimal growth is predicted using the BOFCORE, the 152 regulated reactions under these conditions constrained to zero (see above), a split in the flux ratio between the two NADH dehydrogenases of 1:1, an NGAM value of 8.39 mmol ATP gDW−1 h−1, a GAM value of 59.81 mmol ATP gDW−1 and iAF1260. An FVA on the optimal flux distribution yielded no flexibility in the central metabolism pathways examined in this study. From the Fischer et al (2004) (link) study, data from E. coli growth in reactor conditions were used because the oxygen uptake and CO2 secretion rates were reported, and the flux values that were used were based off 13C-constrained flux balancing.
Publication 2007
Adjustment Disorders Biological Models Cloning Vectors Cobra Escherichia coli Extracellular Space Genome Glucose Metabolism NADH Cytochrome c Oxidoreductase Oxygen
For PCR verification of RMCE integration events, DNA was extracted from 10 to 15 adult flies using the PureLink™ Genomic DNA Mini Kit (Invitrogen). PCR was performed with tag-specific primers and MiMIC specific primers. Tag-specific primers (Tag-F and Tag-R) are mCherry-Seq-F and mCherry-Seq-R for mCherry, EGFPdo-Seq-F and EGFPdo-Seq-R for EGFP, EBFP2do-Seq-F and EBFP2do-Seq-R for EBFP2, TagRFPdo-Seq-F and TagRFPdo-Seq-R for TagRFP, Hrpdo-Seq-F and Hrpdo-Seq-R for HRP, Dendrado-Seq-F and Dendrado-Seq-R for Dendra, Killerreddo-Seq-F and Killerreddo-Seq-R for Killerred, GAL4-1R and GAL4-5F for GAL4, FLP0-Seq-R and SV40pA-Long-F for Flpo, and QF-Seq-R1 and Hsp70-pA-Alt-F for QF. MiMIC specific primers are Orientation-MiL-F and Orientation-MiL-R. PCR reaction conditions were: 1 μl DNA, 1 μl primer 1, 1 μl primer 2, 2 μl 10× Buffer, 0.16 μl dNTPs (25 mM each), 0.08 μl Qiagen HotStarTaq DNA Polymerase (QIAGEN), 14.76 μl milliQ water. PCR cycling conditions in PTC-225 or DNA Engine (MJ Research) were: denaturation at 94° for 10 minutes, 40 cycles at 94° for 30 seconds, 60° for 30 seconds and 72° for 60 seconds, and post-amplification extension at 72° for 10 minutes.
For each RMCE event, 4 PCR reactions were performed: a first PCR reaction with primers Orientation-MiL-F and Tag-R, a second PCR reaction with primers Orientation-MiL-F and Tag-F, a third PCR reaction with primers Orientation-MiL-R and Tag-R, and a fourth PCR reaction with primers Orientation-MiL-R and Tag-F. Since the transposon integrates one or two orientations relative to the gene, only one in two RMCE events is productive with respect to creating a gene trap or protein trap, which is reflected in a positive PCR for reactions 1 and 4, or 2 and 3. A “1/4” PCR pattern is always desired for a productive RMCE event (for example a gene or protein trap), when the gene/transposon configuration is 1/1 or −1/−1. Conversely, a “2/3” PCR pattern is diagnostic of a productive RMCE event, when the gene/transposon configuration is 1/−1 or −1/1. The reverse holds for unproductive RMCE events (Supplementary Figure 2).
Publication 2011
Adjustment Disorders Adult Buffers Diagnosis Diptera DNA-Directed DNA Polymerase Gene Order Genes Genome Heat-Shock Proteins 70 Jumping Genes Mental Orientation Oligonucleotide Primers Proteins

Most recents protocols related to «Adjustment Disorders»

Example 1

Cephem Conjugates

Cephem ether linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The CAS numbers for the two key building blocks is shown. Reaction conditions follow standard conditions for amine acylation in the first step to attach the cephem side chain, for alkylation of a phenol group of a cannabinoid in the second step with optional use of a catalyst or enhancer such as NaI, followed by standard removal of the p-methoxybenzyl protecting group in the third step to furnish the product. A di-alkylated product may also be obtained.

[Figure (not displayed)]

Carbacephem Conjugates

Carbacephem ether linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The general starting material [177472-75-2] was reported in racemic form as [54296-34-3] (Journal of the American Chemical Society (1974), 96(24), 7584) and is elaborated to the iodide intermediate after installing a side chain of choice using a previously reported process (WO 96/04247). Alkylation of CBD with the iodide followed by deprotection, both steps under standard conditions, provides the desired product.

[Figure (not displayed)]

Penem Conjugates

Penem ether linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The starting material [145354-22-9], prepared as reported (Journal of Organic Chemistry, 58(1), 272-4; 1993), is reacted with CBD under standard alkylating conditions. The silyl ether TBS protecting group is then removed followed by deallylation under known conditions to give the desired product.

[Figure (not displayed)]

Carbapenem Conjugates

Carbapenem ether linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The starting material [136324-03-3] is reacted with CBD under standard alkylating conditions. The silyl ether TES protecting group is then removed followed by removal of the p-methoxybenzyl ester protecting group under known conditions to give the desired product.

[Figure (not displayed)]

Full text: Click here
Patent 2024
Acylation Adjustment Disorders Alkylation Amines Cannabinoids carbacephems Carbapenems Esters Ethers Iodides Monobactams Penem Phenol
Not available on PMC !

Example 1

An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their percent composition in the crude oil fractions) are given in Table 1 below.

TABLE 1
Stream NameBoiling RangeNi (ppm)V (ppm)S (wt. %)N (ppm)
Hydrocarbon3.414.521.6444
Feed
Light StreamLess than<1<10.213
370° C.
Heavy StreamGreater than 4.414.21.4431
370° C.

Details of the un-hydrotreated heavy stream are shown below in Table 2, where the heavy stream is designated EX-1(A).

The same Arab light crude oil used in Example 1 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3(A), results are designated CE-1. Specifically, the temperature was 675° and the TOS was 75 seconds.

TABLE 4
3(A)3(B)3 (Combined)CE-1
(wt. %)(wt. %)(wt. %)(wt. %)
Dry Gas9.876.438.0610.80
Light Olefins39.1151.6743.4634.89
Ethylene11.8210.0610.6910.41
Propylene18.3425.7621.0516.51
Butylene8.9615.8411.727.96
Gasoline Range33.1224.6028.3824.21
Products
Coke4.926.615.5113.86
Conversion91.1494.4689.8687.38

As can be seen in Table 4, the combined yields of total light olefins from the present methods are significantly higher than the yields from the comparative methods. Further, each of examples 3(A), 3(B), and 3(Combined) show significantly decreased levels of coke formation relative to the comparative example CE-1.

Example 2

The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an Hz/oil ratio 1200:1(v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.

The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below and are designated EX-2.

TABLE 2
EX-1(A)EX-2
Kinematic viscosity at 100° C. (mm2/s)6
Density (g/ml)0.9650.8402
Nitrogen (ppm)120868.5
Sulfur (wt. %)3.10.007
Ni (ppm)10<1
V (ppm)32<1
Aromatics68.625.6

The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization of the product is given in Table 5 below.

TABLE 5
CE-13(B)
Temp. ° C.645645
T.O.S.(s)7575
Steaming Cond.810° C. for 6 hours
CAT/OIL6.488.00
Conversion (%)82.7794.46
Yields (wt. %)
H2 (wt. %)0.600.93
C1 (wt. %)4.823.71
C2 (wt. %)2.741.79
C2═ (wt. %)8.0710.06
C3 (wt. %)2.262.25
C3═ (wt. %)17.1625.76
iC4 (wt. %)0.671.58
nC4 (wt. %)0.550.69
t2C4═ (wt. %)2.393.92
1C4═ (wt. %)1.672.78
iC4═ (wt. %)3.596.01
c2C4═ (wt.%)1.903.14
1,3-BD (wt. %)0.010.63
Total Gas (wt. %)46.4463.25
Gasoline (wt. %)18.0924.60
LCO (wt. %)9.843.95
HCO (wt. %)7.381.59
Coke (wt. %)18.246.61
Groups (wt. %)
H2—C2 (dry gas)16.2416.49
C3—C4 (LPG)30.1946.77
C2═−C4═ (Light34.7952.30
olefins)
C3═+C426.7142.24
C4═ (Butenes)9.5516.48
Molar Ratios
mol/mol)
C2═/C23.156.03
C3═/C37.9711.97
C4═/C48.067.52
iC4═/C40.380.36
iC4═/iC45.513.94

As can be seen in Table 5, utilizing a hydrotreated heavy stream as the feed to the catalytic reactor results in higher conversion; greater yield of C2, C3, and C4 olefins; greater yield of gasoline; and significantly decreased coke formation, among other advantages.

Example 3

The respective fractions of Arab light crude were cracked at the conditions described below. A catalyst with the composition shown in Table 3 below as used in all of the reactions.

TABLE 3
ComponentWeight %Notes
ZSM-520Phosphorus impregnated at 7.5 wt. %
P2O5 on zeolite
USY21Lanthanum impregnated at 2.5 wt. %
La2O3 on zeolite
Alumina8Pural SB from Sasol
Clay49Kaolin
Silica2Added as colloidal silica Ludox TM-40

An Advanced Cracking Evaluation (ACE) unit was used to simulate a commercial FCC process. The reaction was run two times with fresh catalyst to simulate two separate FCC reaction zones in parallel.

Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B). The weight ratio of catalyst to hydrocarbons was 8.

It should be understood that time-on-stream (TOS) is directly proportional to residence time.

The light stream from Example 1 was fed to the advanced cracking evaluation unit. A time-on-stream (TOS) of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 675° C. was used.

The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization is shown in both Table 4 and Table 5.

The streams of Examples 3(A) and 3(B) were combined to form a single stream. The single stream simulates the output of processing a whole crude according to the methods of the present disclosure.

Example 3(Combined) is a weighted average of Examples 3(A) and 3(B). Example 3(A) represented 53 wt. % of Example 3(Combined). Example 3(B) represented 44 wt. % of Example 3 (Combined).

Full text: Click here
Patent 2024
Adjustment Disorders Alkenes Arabs butylene Catalysis Clay Cocaine Distillation ethylene GAS6 protein, human Gravity Hutterite cerebroosteonephrodysplasia syndrome Hydrocarbons Kaolin Lanthanum Light Molar Neoplasm Metastasis Nitrogen Oxide, Aluminum Petroleum phosphoric anhydride Phosphorus Pressure propylene Regeneration Silicon Dioxide Simulate composite resin Sulfur Viscosity Vision Zeolites

Example 1

An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their wt. % composition in the crude oil) are given in Table 1 below.

TABLE 1
Boiling Ni VS N
Stream NameRange(ppm)(ppm)(wt. %)(ppm)
Hydrocarbon4.414.21.6444
Feed
Light StreamLess than <1<10.8136
540° C.
Heavy StreamGreater than4.414.20.8308
540° C.

The same Arab light crude oil used in Example 3 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3.

TABLE 4
EX-3CE-1
Constituent(wt. %)(wt. %)
H20.680.72
C16.476.86
C23.103.23
C2 = (ethylene)10.8510.41
C31.671.65
C3 = (propylene)18.2016.51
iC40.460.42
nC40.410.56
t2C4 =2.221.93
1C4 =1.651.40
iC4 =3.573.09
c2C4 =1.791.54
1,3-BD1.110.99
Butenes9.227.96
Total Gas52.1749.31
Dry Gas10.2410.80
Total Light Olefins38.2734.89
Gasoline27.9224.21
LCO8.439.43
HCO2.043.20
Coke9.4413.86
Total Gas + Coke61.6163.17

As can be seen in Table 4, the yield of total light olefins from the inventive EX-3 is significantly higher than the yield of light olefins in the comparative CE-1. Additionally, EX-3 shows significantly lower coke formation than the comparative CE-1.

Example 2

The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an H2/oil ratio 1200:1 (v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.

The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below.

TABLE 2
Kinematic viscosity at 100° C.67.6 mm2/s
Density at 60° C.0.9 g/cm3
Sulfur (wt. %)0.36
Ni (ppm)1
V (ppm)3
Fe (ppm)<1
Na (ppm)<10

Example 3

A catalyst with the composition shown in Table 3 below as used in all of the reactions.

TABLE 3
ComponentWeight %Notes
ZSM-520Phosphorus impregnated at 7.5 wt. % P2O5
on zeolite
USY21Lanthanum impregnated at 2.5 wt. % La2O3
on zeolite
Alumina8Pural SB from Sasol
Clay49Kaolin
Silica2Added as colloidal silica Ludox TM-40

An Advanced Cracking Evaluation (ACE) unit was used to simulate a down-flow FCC reaction zone with multiple inlet points. The ACE unit emulates commercial FCC process.

Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B).

The light stream from Example 1 was combined with the hydrotreated heavy stream from Example 2 to form a combined feed stream. The combined feed stream was fed to the ACE unit. A time-on-stream (TOS) of 75 seconds and a temperature of 675° C. was used. Fresh catalyst was steamed deactivated at 810° C. for 6 hours to resemble the equilibrium catalyst in the actual process. The steam deactivated catalyst was used in this reaction. It should be understood that TOS is directly proportional to residence time.

Full text: Click here
Patent 2024
43-63 Adjustment Disorders Alkenes Arabs BD-38 butylene Catalysis Clay Cocaine Distillation ethylene Gravity Hydrocarbons Kaolin Lanthanum Light Neoplasm Metastasis Nitrogen Oxide, Aluminum Petroleum phosphoric anhydride Phosphorus Pressure propylene Regeneration Silicon Dioxide Steam Sulfur Viscosity Vision Zeolites
Not available on PMC !

Example 3

PCR procedures for the preparation of cDNA may be performed using 2×KAPA HIFI™ HotStart ReadyMix by Kapa Biosystems (Woburn, MA). This system includes 2×KAPA ReadyMix 12.5 μl; Forward Primer (10 μM) 0.75 μl; Reverse Primer (10 μM) 0.75 μl; Template cDNA 100 ng; and dH2O diluted to 25.0 μl. The reaction conditions may be at 95° C. for 5 min. The reaction may be performed for 25 cycles of 98° C. for 20 sec, then 58° C. for 15 sec, then 72° C. for 45 sec, then 72° C. for 5 min, then 4° C. to termination.

The reaction may be cleaned up using Invitrogen's PURELINK™ PCR Micro Kit (Carlsbad, CA) per manufacturer's instructions (up to 5 μg). Larger reactions may require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA may be quantified using the NANODROP™ and analyzed by agarose gel electrophoresis to confirm that the cDNA is the expected size. The cDNA may then be submitted for sequencing analysis before proceeding to the in vitro transcription reaction.

Full text: Click here
Patent 2024
Adjustment Disorders DNA, Complementary Electrophoresis, Agar Gel Oligonucleotide Primers Sequence Analysis Transcription, Genetic
In order to get specific markers for the alien chromosome, we screened 197 wheat group-7-specific microsatellite markers reported by Somers et al. (2004) (link) and 88 pairs of sequence-tagged sites-polymerase chain reaction (STS-PCR) primers on wheat group-7 chromosomes (Supplementary Table S1). At the two-leaf stage, 27 plants of T14-44 and 25 plants of T14-42 were collected and separately pooled for RNA isolation using a TRIzol reagent (InvitrogenTM, Shanghai, China), followed by the treatment with DNase I (InvitrogenTM, Shanghai, China). The samples were sequenced using the Illumina Hiseq2500 platform (Berry Genomics, Beijing, China) to generate 125 bp pair-end reads. The de novo assembly of clean reads was performed by using the software Trinity 2.1.1 (Haas et al., 2013 (link)). The expression level was calculated by mapping reads to the assembled transcripts employing Trinity scripts, RSEM, and edgeR (Haas et al., 2013 (link)). The TransDecoder software package (https://sourceforge.net/projects/transdecoder/) was used to predict the coding region for these transcripts. The transcripts were annotated in the Swiss-Prot database using Blastx. The transcripts expressed in T14-44 but not in T14-42 were extracted. Then, the transcripts annotated as Nucleotide Binding Site–Leucine Rich Repeat (NBS-LRR) protein and protein kinases were used to design primers using the software Primer 5.0 (PREMIER Biosoft, San Francisco, CA, USA).
The conditions of the polymerase chain reaction (PCR) were as follows: initial denaturation at 94°C for 4 min, followed by 35 cycles of 30 s at 94°C, 30 s for annealing at 55°C–60°C, 1 min for extension at 72°C, and a final extension at 72°C for 10 min. Amplified PCR products were separated on 8% non-denaturing polyacrylamide gels stained with silver at 200 V for 1 h and 1.5% agarose gels stained with ethidium bromide at 150 V for approximately 25 min. The D2000 Plus DNA Ladder (GenStar, Beijing, China) and the 100 bp DNA Ladder (TianGen Biotech Co, Beijing, China) were used for the DNA marker in non-denaturing polyacrylamide gel and agarose gel electrophoresis, respectively.
Full text: Click here
Publication 2023
Adjustment Disorders Aliens Berries Binding Sites Chromosome Markers Chromosomes Deoxyribonuclease I Electrophoresis, Agar Gel Ethidium Bromide Gels isolation Leucine-Rich Repeat Proteins Markers, DNA Nucleotides Oligonucleotide Primers Plant Leaves Plants polyacrylamide gels Protein Kinases Sepharose Sequence Tagged Sites Short Tandem Repeat Silver Triticum aestivum trizol

Top products related to «Adjustment Disorders»

Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in Japan, China, United States, France, Germany, Switzerland, Canada, Sweden, Italy, Puerto Rico, Singapore
The PrimeScript RT reagent kit is a reverse transcription kit designed for the synthesis of first-strand cDNA from RNA templates. The kit includes RNase-free reagents and enzymes necessary for the reverse transcription process.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in Japan, China, United States, Switzerland, Germany, Australia, Canada, United Kingdom, France, Singapore, Puerto Rico, Sweden
SYBR Premix Ex Taq is a ready-to-use solution for real-time PCR amplification and detection. It contains all the necessary components, including DNA polymerase, dNTPs, and SYBR Green I dye, for efficient and accurate gene quantification.
Sourced in United States, Germany, United Kingdom, Japan, Lithuania, France, Italy, China, Spain, Canada, Switzerland, Poland, Australia, Belgium, Denmark, Sweden, Hungary, Austria, Ireland, Netherlands, Brazil, Macao, Israel, Singapore, Egypt, Morocco, Palestine, State of, Slovakia
The High-Capacity cDNA Reverse Transcription Kit is a laboratory tool used to convert RNA into complementary DNA (cDNA) molecules. It provides a reliable and efficient method for performing reverse transcription, a fundamental step in various molecular biology applications.
Sourced in United States, Japan, China, Germany, United Kingdom, Switzerland, Canada, Singapore, Italy, France, Belgium, Denmark, Spain, Netherlands, Lithuania, Estonia, Sweden, Brazil, Australia, South Africa, Portugal, Morocco
The StepOnePlus Real-Time PCR System is a compact, flexible, and easy-to-use instrument designed for real-time PCR analysis. It can be used to detect and quantify nucleic acid sequences.
Sourced in Japan, China, United States, Germany, Switzerland, Canada
The Reverse Transcription Kit is a laboratory tool designed to convert RNA molecules into complementary DNA (cDNA) sequences. The kit provides the essential components, including reverse transcriptase enzyme, buffer, and necessary reagents, to facilitate the reverse transcription process.
Sourced in United States, Lithuania, Germany, China, Canada, United Kingdom, Japan, Italy, Switzerland, Netherlands, Singapore, Australia, Belgium, Denmark, India, France, Sao Tome and Principe, Poland, Spain, Sweden, Gabon, Latvia, Jamaica, Czechia, Taiwan, Province of China, Israel, Estonia, Finland
The RevertAid First Strand cDNA Synthesis Kit is a tool used for the reverse transcription of RNA to complementary DNA (cDNA). It contains reagents necessary for the conversion of RNA to single-stranded cDNA, which can then be used for various downstream applications.
Sourced in Japan, China, United States, Switzerland, Germany, Australia, Canada, France, Singapore, Lithuania, United Kingdom
SYBR Premix Ex Taq II is a ready-to-use PCR master mix containing SYBR Green I dye, Taq DNA polymerase, and other necessary reagents for real-time PCR amplification.

More about "Adjustment Disorders"

Adjustment disorders, also known as situational depression or reactive disorders, are a group of mental health conditions characterized by the development of emotional or behavioral symptoms in response to a stressful life event or major change.
These disorders can impair an individual's social, occupational, or other important areas of functioning and can be acute or chronic in nature.
Effective research tools, such as PubCompare.ai's AI-driven solution, can enhance the reproducibility and accuracy of adjustment disorder studies by helping researchers easily locate relevant protocols from literature, preprints, and patents.
Powerful comparison tools like those offered by PubCompare.ai can also be used to identify the best protocols and products for researchers' specific needs, improving the quality and impact of their adjustment disorders research.
When studying adjustment disorders, researchers may utilize various laboratory techniques and reagents, such as TRIzol reagent for RNA extraction, PrimeScript RT reagent kit or RevertAid First Strand cDNA Synthesis Kit for reverse transcription, and SYBR Premix Ex Taq or SYBR Premix Ex Taq II for real-time PCR analysis using instruments like the StepOnePlus Real-Time PCR System.
These tools and techniques can provide valuable insights into the underlying mechanisms and dynamics of adjustment disorders.
By incorporating synonyms, related terms, abbreviations, and key subtopics, researchers can optimize their content for search engine visibility and enhance the discoverability of their adjustment disorders research.
This comprehensive approach can lead to more impactful and reproducible studies, ultimately advancing the understanding and treatment of this important group of mental health conditions.