The largest database of trusted experimental protocols
> Disorders > Neoplastic Process > Lung Cancer

Lung Cancer

Lung Cancer is a malignant disease characterized by uncontrolled growth and spread of abnormal cells in the lungs.
It is one of the most common and deadly forms of cancer, with various histological subtypes and risk factors including smoking, occupational exposures, and genetic predisposition.
Effective diagnosis and treatment strategies are critical for improving patient outcomes, and ongoing research aims to advance our understanding of the molecular mechanisms driving lung cancer development and progression.

Most cited protocols related to «Lung Cancer»

GEPIA performs survival analysis based on gene expression levels (Figure 2D). This function allows users to select their custom cancer types for overall or disease-free survival analysis. For example, to examine the survival curves of an input gene in lung cancer, a user can select lung squamous cell carcinoma (LUSC) only or choose both LUSC and lung adenocarcinoma for the survival analyses. GEPIA uses log-rank test, sometimes called the Mantel–Cox test, for the hypothesis evaluation. The cox proportional hazard ratio and the 95% confidence interval information can also be included in the survival plot. The thresholds for high/low expression level cohorts can be adjusted.
For survival analysis, GEPIA also provides a gene normalization feature that allows the relative expression of two different genes as input. For example, when investigating gene FOXP3 in cancer survival analysis, users can also input another gene such as CD3G to normalize the expression of FOXP3. In such case, GEPIA will perform the survival analysis based on the FOXP3/CD3G relative expression levels. Furthermore, GEPIA can also present top genes that are most associated with cancer patient survival. The gene list is ranked by P-values of survival analysis based on any input cancer types.
Publication 2017
Adenocarcinoma of Lung Gene, Cancer Gene Expression Genes Lung Lung Cancer Malignant Neoplasms Patients Squamous Cell Carcinoma
The gene set analysis software was compared using three datasets including two large studies and one small one.
The two large studies included a lung cancer set was provided with GSEA-R package [49 ] and a type 2 diabetes dataset comes from ChipperDB [51 ]. These datasets were chosen because they were originally used to validate and/or compare GSEA [3 (link),4 (link)] and PAGE [5 (link)]
The small dataset is a gene expression study from our group describing human MSC response to 8 hours of exposure to the signaling molecule BMP6. This dataset includes two experimental groups each with paired treatment and control samples, resulting in a total of 4 gene chips. We have deposited the dataset into Gene Expression Omnibus (GEO) repository (accession number GSE13604). For the use in this paper, the raw data were processed by using RMA implemented in the Bioconductor Affy package [52 (link)] with up-to-date probe set definition (.CDF file) based on Entrez Gene sequence, Hs133P_Hs_ENTREZG_8 [53 (link)]. Annotation data were retrieved from the GAIQ website [48 ]. The type 2 diabetes dataset was processed similarly from raw data files.
Full text: Click here
Publication 2009
Base Sequence BMP6 protein, human Diabetes Mellitus, Non-Insulin-Dependent Gene Chips Gene Expression Genes Genes, vif Homo sapiens Lung Cancer
A Pubmed search was performed to identify lung cancer survival associated biomarkers using all combinations of the keywords “lung cancer”, “NSCLC”, “adenocarcinoma”, “squamous cell carcinoma”, “survival”, “gene expression”, “signature” and “meta analysis”. Only studies published in English were included. Eligibility criteria also included the investigation of the biomarker in at least 50 patients - biomarkers described in experimental models only were omitted. For each gene/signature the exact conditions in which it was identified have been retrieved, and these have been used as filtering when selecting the patients for the survival analysis.
To visualize the performance of the various biomarkers in datasets including different number of patients, we have generated funnel plots depicting the hazard ratio (and confidence intervals) on the horizontal axis vs. the sample size on the vertical axis for each dataset. We also added an option to the online interface to simultaneously perform the analysis in each of the individual datasets. Finally, significance was set at p<0.01.
Full text: Click here
Publication 2013
Adenocarcinoma Biological Markers Eligibility Determination Epistropheus Gene Expression Genes Lung Lung Cancer Non-Small Cell Lung Carcinoma Patients Squamous Cell Carcinoma Tumor Markers
We enrolled participants from August 2002 through April 2004; screening took place from August 2002 through September 2007. Participants were followed for events that occurred through December 31, 2009 (Fig. 1 in the Supplementary Appendix, available at NEJM.org).
Eligible participants were between 55 and 74 years of age at the time of randomization, had a history of cigarette smoking of at least 30 pack-years, and, if former smokers, had quit within the previous 15 years. Persons who had previously received a diagnosis of lung cancer, had undergone chest CT within 18 months before enrollment, had hemoptysis, or had an unexplained weight loss of more than 6.8 kg (15 lb) in the preceding year were excluded. A total of 53,454 persons were enrolled; 26,722 were randomly assigned to screening with low-dose CT and 26,732 to screening with chest radiography. Previously published articles describing the NLST10 (link),12 (link) reported an enrollment of 53,456 participants (26,723 in the low-dose CT group and 26,733 in the radiography group). The number of enrolled persons is now reduced by 2 owing to the discovery of the duplicate randomization of 2 participants.
Participants were enrolled at 1 of the 10 LSS or 23 ACRIN centers. Before randomization, each participant provided written informed consent. After the participants underwent randomization, they completed a questionnaire that covered many topics, including demographic characteristics and smoking behavior. The ACRIN centers collected additional data for planned analyses of cost-effectiveness, quality of life, and smoking cessation. Participants at 15 ACRIN centers were also asked to provide serial blood, sputum, and urine specimens. Lung-cancer and other tissue specimens were obtained at both the ACRIN and LSS centers and were used to construct tissue microarrays. All biospecimens are available to researchers through a peer-review process.
Publication 2011
BLOOD Chest Diagnosis Hemoptysis Lung Cancer Microarray Analysis Peer Review Radiography, Thoracic Sputum Tissues Urine X-Rays, Diagnostic
This international multidisciplinary classification has been produced as a collaborative effort by the International Association for the Study of Lung Cancer (IASLC), the American Thoracic Society (ATS), and the European Respiratory Society. The purpose is to provide an integrated clinical, radiologic, molecular, and pathologic approach to classification of the various types of lung adenocarcinoma that will help to define categories that have distinct clinical, radiologic, molecular, and pathologic characteristics. The goal is to identify prognostic and predictive factors and therapeutic targets.
Publication 2011
Adenocarcinoma of Lung Europeans Lung Cancer Respiratory Rate Therapeutics

Most recents protocols related to «Lung Cancer»

Example 49

The functional activity of compounds was determined in a cell line where p70S6K is constitutively activated. Test article was dissolved in DMSO to make a 10 μM stock. PathScan® Phospho-S6 Ribosomal Protein (Ser235/236) Sandwich ELISA Kit was purchased from Cell Signaling Technology. A549 lung cancer cell line, was purchased from American Type Culture Collection. A549 cells were grown in F-12K Medium supplemented with 10% FBS. 100 μg/mL penicillin and 100 μg/mL streptomycin were added to the culture media. Cultures were maintained at 37° C. in a humidified atmosphere of 5% CO2 and 95% air. 2.0×105 cells were seeded in each well of 12-well tissue culture plates for overnight. Cells were treated with DMSO or test article (starting at 100 μM, 10-dose with 3 fold dilution) for 3 hours. The cells were washed once with ice cold PBS and lysed with 1× cell lysis buffer. Cell lysates were collected and samples were added to the appropriate wells of the ELISA plate. Plate was incubated for overnight at 4° C. 100 μL of reconstituted Phospho-S6 Ribosomal Protein (Ser235/236) Detection Antibody was added to each well and the plate was incubated at 37° C. for 1 hour. Wells were washed and 100 μl of reconstituted HRP-Linked secondary antibody was added to each well. The plate was incubated for 30 minutes at 37° C. Wash procedure was repeated and 100 μL of TMB Substrate was added to each well. The plate was incubated for 10 minutes at 37° C. 100 μL of STOP Solution was added to each well and the absorbance was read at 460 nm using Envision 2104 Multilabel Reader (PerkinElmer, Santa Clara, CA). IC50 curves were plotted and IC50 values were calculated using the GraphPad Prism 4 program based on a sigmoidal dose-response equation.

TABLE 2
In vitro biological data for representative compounds of Formula
I-IX Unless otherwise noted, compounds that were tested had an IC50
of less than 50 μM in the S6K binding assay.
Example NumberS6K Binding Activity
1A
2B
3B
4A
5A
6A
7A
8A
9B
10B
11B
12C
13C
14C
15A
16A
17B
18A
19A
20A
21A
22C
23B
24A
25A
26C
27A
28C
29C
30C
31A
32A
33C
34C
35C
36C
37C
38A
39A
40A
41A

Unless otherwise noted, compounds that were tested had an IC50 of less than 50 μM in the S6K Binding assay. A=less than 0.05 μM; B=greater than 0.05 μM and less than 0.5 μM; C=greater than 0.5 μM and less than 10 μM;

Full text: Click here
Patent 2024
A549 Cells Atmosphere Biological Assay Biopharmaceuticals Buffers Cell Lines Cells Cold Temperature Culture Media Enzyme-Linked Immunosorbent Assay Immunoglobulins Lung Cancer Penicillins prisma Psychological Inhibition Ribosomal Proteins Ribosomal Protein S6 Ribosomal Protein S6 Kinases, 70-kDa Streptomycin Sulfoxide, Dimethyl Technique, Dilution Tissues
Not available on PMC !

Example 7

The MTT Cell Proliferation assay determines cell survival following apple stem cell extract treatment. The purpose was to evaluate the potential anti-tumor activity of apple stem cell extracts as well as to evaluate the dose-dependent cell cytotoxicity.

Principle: Treated cells are exposed to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT enters living cells and passes into the mitochondria where it is reduced by mitochondrial succinate dehydrogenase to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with DMSO and the released, solubilized formazan is measured spectrophotometrically. The MTT assay measures cell viability based on the generation of reducing equivalents. Reduction of MTT only occurs in metabolically active cells, so the level of activity is a measure of the viability of the cells. The percentage cell viability is calculated against untreated cells.

Method: A549 and NCI-H520 lung cancer cell lines and L132 lung epithelial cell line were used to determine the plant stem cell treatment tumor-specific cytotoxicity. The cell lines were maintained in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a 5% CO2 at 37 Celsius. Cells were seeded at 5×103 cells/well in 96-well plates and incubated for 48 hours. Triplicates of eight concentrations of the apple stem cell extract were added to the media and cells were incubated for 24 hours. This was followed by removal of media and subsequent washing with the phosphate saline solution. Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer Mannheim, Indianapolis, IN) New medium containing 50 μl of MTT solution (5 mg/ml) was added to each well and cultures were incubated a further 4 hours. Following this incubation, DMSO was added and the cell viability was determined by the absorbance at 570 nm by a microplate reader.

In order to determine the effectiveness of apple stem cell extracts as an anti-tumor biological agent, an MTT assay was carried out and IC50 values were calculated. IC50 is the half maximal inhibitory function concentration of a drug or compound required to inhibit a biological process. The measured process is cell death.

Results: ASC-Treated Human Lung Adenocarcinoma Cell Line A549.

TABLE 7
Results of cytotoxicity of apple stem cell extract on lung cancer cell
line A549 as measured by MTT assay (performed in triplicate).
Values of replicates are % of cell death.
Concentration*replicatereplicatereplicateMean of% Live
(μg/ml)123replicatesSDSEMCells
25093.1890.8690.3491.461.510.878.54
10086.8885.1885.6985.920.870.5014.08
5080.5879.4981.0480.370.800.4619.63
2574.2873.8176.3974.831.380.7925.17
12.567.9868.1371.7569.282.131.2330.72
6.2561.6762.4567.1063.742.931.6936.26
3.12555.3756.7762.4558.203.752.1641.80
1.56249.0751.0857.8052.654.572.6447.35
0.78142.7745.4053.1547.115.403.1252.89

Results: ASC-Treated Human Squamous Carcinoma Cell Line NCI-H520.

TABLE 8
Results of cytotoxicity of apple stem cell extract on lung cancer
cell line NCI-H520 measured by MTT assay (performed in triplicate).
Values of replicates are % of cell death.
Concen-%
tration*replicatereplicatereplicateMean ofLive
(μg/ml)123replicatesSDSEMcell
25088.2889.2987.7388.430.790.4611.57
10078.1379.1978.1378.480.610.3521.52
5067.9869.0968.5468.540.560.3231.46
2557.8358.9958.9458.590.660.3841.41
12.547.6848.8949.3448.640.860.5051.36
6.2537.5338.7939.7538.691.110.6461.31
3.12527.3728.6930.1528.741.390.8071.26
1.56217.2218.5920.5618.791.680.9781.21
0.781 7.07 8.4810.96 8.841.971.1491.16

Results: ASC-treated Lung Epithelial Cell Line L132.

TABLE 9
Results of cytotoxicity of apple stem cell extract on
lung epithelial cell line L132 as measured by MTT assay
(performed in triplicate). Values of replicates are % of cell death.
Concen-rep-rep-rep-Mean%
tration*licatelicatelicateofLive
(μg/ml)123replicatesSDSEMcell
25039.5142.5244.0342.022.301.3357.98
10032.9334.4433.6933.690.750.4466.31
5030.6028.9430.5230.020.940.5469.98
2527.9627.8127.1327.630.440.2572.37
12.525.6225.5525.4025.520.120.0774.48
6.2523.1320.8718.6120.872.261.3179.13
3.12513.3411.0811.8312.081.150.6687.92
1.562 6.56 7.31 9.57 7.811.570.9192.19
0.781 8.06 4.30 3.54 5.302.421.4094.70

Summary Results: Cytotoxicity of Apple Stem Cell Extracts.

TABLE 10
IC50 values of the apple stem cell extracts on the on the target
cell lines as determined by MTT assay.
Target Cell
LineIC50
A54912.58
NCI-H52010.21
L132127.46

Apple stem cell extracts killed lung cancer cells lines A549 and NCI-H520 at relatively low doses: IC50s were 12.58 and 10.21 μg/ml respectively as compared to 127.46 μg/ml for the lung epithelial cell line L132. Near complete anti-tumor activity was seen at a dose of 250 μg/ml in both the lung cancer cell lines. This same dose spared more than one half of the L132 cells. See Tables 7-10. The data revealed that apple stem cell extract is cytotoxic to lung cancer cells while sparing lung epithelial cells. FIG. 6 shows a graphical representation of cytotoxicity activity of apple stem cell extracts on lung tumor cell lines A549, NCIH520 and on L132 lung epithelial cell line (marked “Normal”). The γ-axis is the mean % of cells killed by the indicated treatment compared to unexposed cells. The difference in cytotoxicity levels was statistically significant at p≤05.

Example 9

The experiment of Example 7 was repeated substituting other plant materials for ASC. Plant stem cell materials included Dandelion Root Extract (DRE), Aloe Vera Juice (AVJ), Apple Fiber Powder (AFP), Ginkgo Leaf Extract (GLE), Lingonberry Stem Cells (LSC), Orchid Stem Cells (OSC) as described in Examples 1 and 2. The concentrations of plant materials used were nominally 250, 100, 50, 25, 6.25, 3.125, 1.562, and 0.781 μg/mL. These materials were tested only for cells the human lung epithelial cell line L132 (as a proxy for normal epithelial cells) and for cells of the human lung adenocarcinoma cell line A549 (as a proxy for lung cancer cells).

A549 cells lung cancer cell line cytotoxicity results for each of the treatment materials.

DRE-Treated Lung Cancer Cell Line A549 Cells.

TABLE 11
Triplicate results of cell death of DRE-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-DRE-Live
treated A549% of cell deathMeanSDSEMcell
25080.4376.4074.8477.232.891.6722.77
10067.6075.2663.7768.885.853.3831.12
5065.3262.9459.9462.732.701.5637.27
2556.8357.9748.1454.315.383.1145.69
6.2555.5949.6949.1751.483.572.0648.52
3.12551.7648.4545.3448.523.211.8551.48
1.56243.6944.0036.0241.244.522.6158.76
0.78137.4726.1919.5727.749.055.2372.26

AVJ-Treated Lung Cancer Cell line A549 Cells.

TABLE 12
Triplicate results of cell death of AVJ-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-AVJ-treatedLive
A549% of cell deathMeanSDSEMcell
25076.8178.1675.8876.951.140.6623.05
10076.4075.2673.7175.121.350.7824.88
5065.3266.1559.9463.803.371.9536.20
2550.1048.4556.6351.734.322.5048.27
6.2547.5246.3846.1746.690.720.4253.31
3.12539.8638.6143.7940.752.701.5659.25
1.56232.4019.7730.5427.576.823.9472.43
0.78120.5015.6332.1922.778.514.9277.23

AFP-Treated Lung Cancer Cell line A549 Cells.

TABLE 13
Triplicate results of cell death of AFP-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-AFP-treatedLive
A549% of cell deathMeanSDSEMcell
25086.1387.9986.6586.920.960.5613.08
10079.5081.0682.0980.881.300.7519.12
5073.6072.4671.3372.461.140.6627.54
2568.0167.7066.9867.560.530.3132.44
6.2560.8762.1160.7761.250.750.4338.75
3.12549.4851.7650.7250.661.140.6649.34
1.56240.0641.7247.0042.933.622.0957.07
0.78139.2337.7836.8537.961.200.6962.04

GLE-treated Lung Cancer Cell line A549 Cells.

TABLE 14
Triplicate results of cell death of GLE-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-GLE-treatedLive
A549% of cell deathMeanSDSEMcell
25088.4291.4990.4490.121.560.909.88
10084.3983.7783.1683.770.610.3516.23
5079.4781.5876.7579.272.421.4020.73
2573.6072.5471.4072.511.100.6327.49
6.2562.8963.6859.9162.161.991.1537.84
3.12550.1854.4751.8452.162.171.2547.84
1.56246.9344.3043.3344.851.861.0755.15
0.78139.5639.3940.9639.970.870.5060.03

LSC-treated lung cancer cell lines A549 cells.

TABLE 15
Triplicate results of cell death of LSC-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration
(μg/mL)% Live
LSC treated A549% of cell deathMeanSDSEMcell
25077.5478.8578.2078.200.650.3821.80
10077.1476.0476.5976.590.550.3223.41
5066.4268.5266.8267.251.120.6532.75
2559.8067.2264.1663.733.732.1536.27
6.2550.5348.8248.0749.141.260.7350.86
3.12541.1443.6042.7242.491.240.7257.51
1.56239.4739.7440.6139.940.600.3460.06
0.78138.5531.8336.7935.723.482.0164.28

OSC-treated Lung Cancer Cell line A549 Cells.

TABLE 16
Triplicate results of cell death of OSC-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration
(μg/mL)% Live
OSC-treated A549% of cell deathMeanSDSEMcell
25070.8465.5771.4969.303.251.8730.70
10048.8150.9157.2852.334.412.5547.67
5046.5949.6053.3349.843.381.9550.16
2538.7740.8136.5838.722.111.2261.28
6.2535.7440.7941.0539.193.001.7360.81
3.12534.5533.6837.0235.081.731.0064.92
1.56233.8633.4427.6331.643.482.0168.36
0.78121.3220.0034.8225.388.214.7474.62

L132 cells (“normal” lung epithelial cell line) cytotoxicity results for each of the treatment materials.

DRE-Treated Lung Epithelial Cell Line L132 cells.

TABLE 17
Triplicate results of cell death of DRE-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration% of %
(μg/mL)cellLive
DRE-treated L132deathMeanSDSEMcell
25086.6686.6186.6686.640.030.0213.36
10076.2977.3976.8476.840.550.3223.16
5065.9268.1767.0167.031.130.6532.97
2555.5458.9557.1957.231.700.9842.77
6.2545.1749.7347.3747.422.281.3252.58
3.12534.8040.5037.5437.612.851.6562.39
1.56224.4231.2827.7227.813.431.9872.19
0.78114.0522.0617.8918.004.012.3182.00

AVJ-Treated Lung Epithelial Cell Line L132 cells.

TABLE 18
Triplicate results of cell death of AVJ-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration % of %
(μg/mL)cellLive
AVJ-treated L132deathMeanSDSEMcell
25057.0355.9353.6255.531.741.0044.47
10050.9949.7847.0449.272.031.1750.73
5044.9543.6340.4543.012.311.3456.99
2538.9137.4933.8636.752.601.5063.25
6.2532.8831.3427.2830.502.891.6769.50
3.12526.8425.1920.6924.243.181.8475.76
1.56220.8019.0514.1117.983.472.0082.02
0.78114.7612.90 7.5211.733.762.1788.27

AFP-Treated Lung Epithelial Cell Line L132 cells.

TABLE 19
Triplicate results of cell death of AFP-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
AFP-treated L132% of cell deathMeanSDSEMcell
25056.1555.4357.1956.260.880.5143.74
10049.9548.2447.6448.611.200.6951.39
5043.7441.0538.0940.962.831.6359.04
2537.5433.8628.5433.324.532.6166.68
6.2531.3426.6718.9925.676.243.6074.33
3.12525.1419.489.4418.027.954.5981.98
1.56218.9412.2910.8714.034.312.4985.97
0.78112.73 5.10 6.81 8.214.002.3191.79

GLE-Treated Lung Epithelial Cell Line L132 cells.

TABLE 20
Triplicate results of cell death of GLE-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
GLE-treated L132% of cell deathMeanSDSEMcell
25084.4283.2083.0883.570.740.4316.43
10080.0579.2978.5979.310.730.4220.69
5072.7571.5974.1072.811.260.7227.19
2580.0581.8679.9980.631.060.6119.37
6.2568.2670.1368.2668.881.080.6231.12
3.12560.6263.0760.6261.441.410.8238.56
1.56248.0748.7748.8348.560.420.2451.44
0.78146.2745.5746.6746.170.560.3253.83

LSC-Treated Lung Epithelial Cell Line L132 cells.

TABLE 21
Triplicate results of cell death of LSC-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
LSC-treated L132% of cell deathMeanSDSEMcell
25086.4185.8285.7686.000.350.2014.00
10081.2181.2779.9980.820.720.4219.18
5075.9674.7473.5174.741.230.7125.26
2574.7472.7571.4772.991.650.9527.01
6.2570.1368.3268.2668.901.060.6131.10
3.12554.0358.0553.4455.172.511.4544.83
1.56253.9751.9851.9852.641.150.6647.36
0.78146.7945.6244.9245.78 0.940.54 54.22

OSC-Treated Lung Epithelial Cell Line L132 cells.

TABLE 22
Triplicate results of cell death of OSC-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration %
(μg/mL)Live
OSC-treated L132% of cell deathMeanSDSEMcell
25061.8462.3760.4461.551.000.5738.45
10054.1453.4452.1053.231.040.6046.77
5042.9442.3040.3241.851.370.7958.15
2535.9434.4833.3134.581.320.7665.42
6.2533.9632.6732.0332.890.980.5767.11
3.12527.4826.2026.7226.800.650.3773.20
1.562 9.80 7.29 7.35 8.151.430.8391.85
0.781 7.29 8.98 8.05 8.110.850.4991.89

Calculated values.

TABLE 23
Calculated IC50 doses (ug/mL) and therapeutic ratios
(IC50 for L132 cells/IC50 for A549 cells) for each
treatment material. Values greater than one indicate
that a material would be more selective in killing cancer
cells than normal cells. ASC results imported from
Example 8. These studies indicate that at least
some of the materials may be effective anti-cancer agents.
ASC has outstanding selectivity compared to other materials.
ASCDREAVJAFPGLELSCOSC
A549 12.589.82211.4811.9811.1 13.733.9 
IC50
L132 127.4656.88 62.6682.6577.6369.26715.38
IC50
Ther.10.15.8 5.56.97.0 0.70.5
Ratio

Full text: Click here
Patent 2024
14-3-3 Proteins 43-63 61-26 A549 Cells Action Potentials Adenocarcinoma of Lung Aloe Aloe vera Antineoplastic Agents Biological Assay Biological Factors Biological Processes Bromides Cardiac Arrest Cell Death Cell Extracts Cell Lines Cell Proliferation Cells Cell Survival Cytotoxin diphenyl DNA Replication Epistropheus Epithelial Cells Fibrosis Formazans Genetic Selection Ginkgo biloba Ginkgo biloba extract Homo sapiens Lingonberry Lung Lung Cancer Lung Neoplasms Malignant Neoplasms Mitochondria Mitochondrial Inheritance Neoplasms Neoplastic Stem Cells Oral Cavity PEG SD-01 Penicillins Pharmaceutical Preparations Phosphates Plant Cells Plant Leaves Plant Roots Plants Powder Psychological Inhibition Saline Solution SD 31 SD 62 SEM-76 Squamous Cell Carcinoma Stem, Plant Stem Cells Streptomycin Succinate Dehydrogenase Sulfoxide, Dimethyl Taraxacum Tetrazolium Salts

Example 3

Lung cancer cell line A549 and squamous cell carcinoma cell line H10 expressing inducible SEQ ID NO: 1-HA vector were established as described previously. SEQ ID NO: 1 expression was detected by qPCR (FIG. 7A) and by Western Blot (FIG. 7B). Immunostaining using a custom-made antibody against SEQ ID NO: 1 reveals a predominant cytoplasmic localization with a filamentous pattern. This data demonstrates that the micropeptide can also be expressed and detectable in these cell lines.

To evaluate the effects of SEQ ID NO: 1 on proliferation, A549 and H10 cells transduced with SEQ ID NO: 1-HA vector or control vector were monitored for 14 days. Growth curves show that cells overexpressing micropeptide SEQ ID NO: 1 have a consistently lower growth rate compared to the control (FIG. 8A). This effect in proliferation is also accompanied by an increase in cells arrested in G1 phase (FIG. 8B). Collectively with the data shown before in the pancreatic cell line BxPC-3, there is a strong evidence of the role of the micropeptide of SEQ ID NO: 1 in decreasing cell proliferation in several cancer types (pancreas, lung and squamous cell carcinoma).

Full text: Click here
Patent 2024
Adenocarcinoma of Lung Cell Cycle Arrest Cell Lines Cell Proliferation Cells Cloning Vectors Cytoplasmic Filaments G1 Phase Immunoglobulins Lung Lung Cancer Malignant Neoplasms Pancreas Squamous Cell Carcinoma Western Blot

Example 4

Through use of a lung metastasis model of mouse breast cancer 4T1 cells, the lung metastasis-suppressing effects of anti-S100A8/A9 monoclonal antibodies were investigated.

In accordance with a protocol illustrated in FIG. 9, 1×105 mouse breast cancer 4T1 cells and 50 μg of each anti-S100A8/A9 monoclonal antibody (Clone Nos.: 45, 85, 235, 258, and 260) were simultaneously injected into the tail vein of five Balb/c nu/nu mice per group, and 2 weeks later, CT scans were performed. FIG. 10 shows the results for comparing typical CT images and the areas of tumor cells calculated from the CT images to those of a negative control group. As a result, it was recognized that Clone No. 45 showed a significant lung metastasis-suppressing effect.

Full text: Click here
Patent 2024
Breast Clone Cells Lung Lung Cancer Malignant Neoplasm of Breast Mice, Inbred BALB C Mice, Nude Monoclonal Antibodies Mus Neoplasm Metastasis Neoplasms Tail Veins X-Ray Computed Tomography
Not available on PMC !

Example 9

The ORF encoding the micropeptide of SEQ ID NO: 3 was cloned in frame with the HA epitope tag in the pMSCV retroviral vector. Western blot and qPCR analysis demonstrated that the micropeptide of SEQ ID NO: 3 was successfully expressed after retroviral transduction, and that the protein product was stable (FIG. 23A y 23B).

Importantly, overexpression of the micropeptide of SEQ ID NO: 3 induces massive cell death in cancer cell lines (A549, human lung cancer and HCT116, human colorectal cancer) (FIG. 23C).

Full text: Click here
Patent 2024
Cell Death Cloning Vectors Colorectal Carcinoma Epitopes Homo sapiens Lung Cancer Malignant Neoplasms Proteins Reading Frames Retroviridae Western Blot

Top products related to «Lung Cancer»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, Germany, United Kingdom, Japan, France, Canada, Australia, Italy, Switzerland, Belgium, New Zealand, Spain, Israel, Sweden, Denmark, Macao, Brazil, Ireland, India, Austria, Netherlands, Holy See (Vatican City State), Poland, Norway, Cameroon, Hong Kong, Morocco, Singapore, Thailand, Argentina, Taiwan, Province of China, Palestine, State of, Finland, Colombia, United Arab Emirates
RPMI 1640 medium is a commonly used cell culture medium developed at Roswell Park Memorial Institute. It is a balanced salt solution that provides essential nutrients, vitamins, and amino acids to support the growth and maintenance of a variety of cell types in vitro.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, China, United Kingdom, Germany, France, Canada, Japan, Australia, Italy, Switzerland, Belgium, New Zealand, Austria, Netherlands, Israel, Sweden, Denmark, India, Ireland, Spain, Brazil, Norway, Argentina, Macao, Poland, Holy See (Vatican City State), Mexico, Hong Kong, Portugal, Cameroon
RPMI 1640 is a common cell culture medium used for the in vitro cultivation of a variety of cells, including human and animal cells. It provides a balanced salt solution and a source of essential nutrients and growth factors to support cell growth and proliferation.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, China, United Kingdom, Germany
The H1299 is a cell line derived from a human non-small cell lung carcinoma. It is commonly used in biological research applications.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.
Sourced in United States, United Kingdom, China, Germany, France, Japan, Italy, Switzerland, Sweden, India, Canada, Egypt, Australia, Holy See (Vatican City State), Brazil
MCF-7 is a cell line derived from human breast adenocarcinoma. It is an adherent epithelial cell line that can be used for in vitro studies.

More about "Lung Cancer"

Lung cancer is a malignant disease characterized by the uncontrolled growth and spread of abnormal cells in the pulmonary system.
It is one of the most prevalent and deadly forms of cancer, with various histological subtypes and risk factors including smoking, occupational exposures, and genetic predisposition.
Effective diagnosis and treatment strategies are critical for improving patient outcomes, and ongoing research aims to advance our understanding of the molecular mechanisms driving lung cancer development and progression.
Researchers often utilize cell lines like H1299 and MCF-7, as well as culture media like RPMI 1640 and DMEM, supplemented with additives like penicillin, streptomycin, and Lipofectamine 2000, to study lung cancer biology and test potential therapies.
Lung cancer can be categorized into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), the latter of which includes subtypes like adenocarcinoma, squamous cell carcinoma, and large cell carcinoma.
Early detection through techniques like low-dose CT screening and minimally invasive biopsies, coupled with advancements in targeted therapies and immunotherapies, have shown promise in enhancing patient prognosis and quality of life.
By leveraging the latest research tools and technologies, scientists are poised to make significant strides in unraveling the complexities of lung cancer, ultimately leading to more effective and personalized treatment approaches for this deadly disease.