The largest database of trusted experimental protocols

Sarcoma

Sarcoma: A diverse group of malignant tumors arising from mesenchymal tissues, such as bone, cartilage, fat, muscle, and blood vessels.
Sarcomas can occur in any part of the body and are categorized based on the specific cell type and tissue of origin.
These cancers often present diagnostic and treatment challenges, making research and innovation in this field crucial.
Identifying the best protocols and optimizing research approaches can help accelerate progress in sarcoma undertsanding and care.

Most cited protocols related to «Sarcoma»

GBD 2019 estimated each epidemiological quantity of interest—incidence, prevalence, mortality, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs)—for 23 age groups; males, females, and both sexes combined; and 204 countries and territories that were grouped into 21 regions and seven super-regions. For GBD 2019, nine countries and territories (Cook Islands, Monaco, San Marino, Nauru, Niue, Palau, Saint Kitts and Nevis, Tokelau, and Tuvalu) were added, such that the GBD location hierarchy now includes all WHO member states. GBD 2019 includes subnational analyses for Italy, Nigeria, Pakistan, the Philippines, and Poland, and 16 countries previously estimated at subnational levels (Brazil, China, Ethiopia, India, Indonesia, Iran, Japan, Kenya, Mexico, New Zealand, Norway, Russia, South Africa, Sweden, the UK, and the USA). All subnational analyses are at the first level of administrative organisation within each country except for New Zealand (by Māori ethnicity), Sweden (by Stockholm and non-Stockholm), the UK (by local government authorities), and the Philippines (by province). In this publication, we present subnational estimates for Brazil, India, Indonesia, Japan, Kenya, Mexico, Sweden, the UK, and the USA; given space constraints, these results are presented in appendix 2. At the most detailed spatial resolution, we generated estimates for 990 locations. The GBD diseases and injuries analytical framework generated estimates for every year from 1990 to 2019.
Diseases and injuries were organised into a levelled cause hierarchy from the three broadest causes of death and disability at Level 1 to the most specific causes at Level 4. Within the three Level 1 causes—communicable, maternal, neonatal, and nutritional diseases; non-communicable diseases; and injuries—there are 22 Level 2 causes, 174 Level 3 causes, and 301 Level 4 causes (including 131 Level 3 causes that are not further disaggregated at Level 4; see appendix 1 sections 3.4 and 4.12 for the full list of causes). 364 total causes are non-fatal and 286 are fatal. For GBD 2019, 12 new causes were added to the modelling framework: pulmonary arterial hypertension, eye cancer, soft tissue and other extraosseous sarcomas, malignant neoplasm of bone and articular cartilage, and neuroblastoma and other peripheral nervous cell tumours at Level 3, and hepatoblastoma, Burkitt lymphoma, other non-Hodgkin lymphoma, retinoblastoma, other eye cancers, and two sites of osteoarthritis (hand and other joints) at Level 4.
Full text: Click here
Publication 2020
Bone Cancer Burkitt Lymphoma Cancer of Eye Cartilages, Articular Cells Degenerative Arthritides Disabled Persons Ethnicity Females Hepatoblastoma Idiopathic Pulmonary Arterial Hypertension Infant, Newborn Injuries Joints Lymphoma, Non-Hodgkin, Familial Males Neuroblastoma Noncommunicable Diseases Nutrition Disorders Peripheral Nervous System Neoplasms Retinoblastoma Sarcoma Tissues
Results are based in part upon data generated by TCGA Research Network (http://cancergenome.nih.gov/). We aggregated TCGA transcriptomic and RPPA data from public repositories, listed in the “Data availability” section. RNA-seq expression data were processed by TCGA at the gene level, rather than at the transcript level. Tumors spanned 32 different TCGA projects, each project representing a specific cancer type, listed as follows: LAML, acute myeloid leukemia; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; LGG, lower grade glioma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; CRC, colorectal adenocarcinoma (combining COAD and READ projects); ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THYM, thymoma; THCA, thyroid carcinoma; UCS, uterine carcinosarcoma; UCEC, uterine corpus endometrial carcinoma; UVM, uveal melanoma. Cancer molecular profiling data were generated through informed consent as part of previously published studies and analyzed per each original study’s data use guidelines and restrictions.
Full text: Click here
Publication 2019
4-carboxyphenylglyoxal Adenocarcinoma Adenocarcinoma of Lung Adrenocortical Carcinoma Breast Carcinoma Carcinoma, Thyroid Carcinoma, Transitional Cell Carcinosarcoma Cells Cholangiocarcinoma Chromophobia Chronic Obstructive Airway Disease Diffuse Large B-Cell Lymphoma Endocervix Endometrial Carcinoma Esophageal Cancer Familial Atypical Mole-Malignant Melanoma Syndrome Gene Expression Profiling Genes Glioblastoma Multiforme Glioma Hepatocellular Carcinomas Hypernephroid Carcinomas Kidney Leukemia, Myelocytic, Acute Lung Lymph Malignant Neoplasms Mesothelioma Neck Neoplasms Ovary Pancreas Paraganglioma Pheochromocytoma Prostate Renal Cell Carcinoma RNA-Seq Sarcoma Serous Cystadenocarcinoma Squamous Cell Carcinoma Squamous Cell Carcinoma of the Head and Neck Stomach Testicular Germ Cell Tumor Thymoma Urinary Bladder Uterus Uveal melanoma X-Ray Photoelectron Spectroscopy
The CCSS cohort consists of previously untreated patients diagnosed prior to 21 years of age with leukemia, lymphoma, central nervous system cancer, neuroblastoma, bone or soft tissue sarcoma, or kidney cancer, who survived for at least five years after the date of diagnosis. Survivors were diagnosed between January 1, 1970 and December 31, 1986 at one of 26 participating institutions. The study design, cohort characteristics and outcomes ascertained are presented in detail elsewhere [12 (link)–14 (link)]. The CCSS was approved by the Institutional Review Board at each participating institution, and informed consent for participation was obtained from all subjects who were 18 or more years of age, or their parents, if the subject was less than 18 years of age.
Publication 2013
Bones Cancer of Kidney Ethics Committees, Research Leukemia Lymphoma Nervous System Neoplasms Neuroblastoma Parent Patients Sarcoma Survivors
FISH on interphase nuclei from paraffin embedded 4-micron sections was performed applying custom probes using bacterial artificial chromosomes (BAC), covering and flanking EWSR1 in 22q12, FUS in 16p11, PBX1 in 1q23, ZNF444 in 19q13 and POU5F1 in 6p21 (Fig. 1). BAC clones were chosen according to USCS genome browser (http://genome.uscs.edu). The BAC clones were obtained from BACPAC sources of Children's Hospital of Oakland Research Institute (CHORI) (Oakland, CA) (http://bacpac.chori.org). DNA from individual BACs was isolated according to the manufacturer’s instructions, labeled with different fluorochromes in a nick translation reaction, denatured, and hybridized to pretreated slides. Slides were then incubated, washed, and mounted with DAPI in an antifade solution, as previously described (Agaram et al., 2008 (link)). The genomic location of each BAC set was verified by hybridizing them to normal metaphase chromosomes. Two hundred successive nuclei were examined using a Zeiss fluorescence microscope (Zeiss Axioplan, Oberkochen, Germany), controlled by Isis 5 software (Metasystems). A positive score was interpreted when at least 20% of the nuclei showed a break-apart signal. Nuclei with incomplete set of signals were omitted from the score.
All cases were first tested with an EWSR1 probe. The EWSR1-rearranged tumors were then evaluated for break-apart signals using probes for PBX1, ZNF444, and POU5F1. The EWSR1 negative tumors were then tested for FUS break-apart, since FUS may substitute for the EWSR1 gene in certain translocation-associated sarcomas. In selective cases, two-color FISH was applied using probe-sets centromerically flanking one gene and telomerically flanking the partner gene, in order to confirm the fusion between EWSR1 and the partner genes. In one case a G-banded karyotype was obtained after short term culture.
Publication 2010
Bacterial Artificial Chromosomes Cell Nucleus Chromosomes Clone Cells DAPI EWSR1 protein, human Fishes Fluorescent Dyes Genes Genome Interphase Karyotyping Metaphase Microscopy, Fluorescence Neoplasms Paraffin pbx1 protein, human POU5F1 protein, human Sarcoma Translocation, Chromosomal
We interrogated the transcriptomes of a cell line derived from a serous borderline tumor, in addition to three sarcomas and 40 ovarian carcinomas obtained from the OvCaRe (Ovarian Cancer Research) frozen tumor bank. Pathology review, sample preparation, RNA extraction, RNA-Seq library construction and RNA-Seq sequence data generation using Illumina GA were performed as previously described [14] (link), [15] (link). The RNA-Seq datasets used in this study are listed in Table 1, which provides a summary-level description of each sample. For each case we list data acquisition statistics, the tumor type and subtype and the number of predictions made by deFuse.
Full text: Click here
Publication 2011
cDNA Library Cell Lines Freezing Neoplasms Ovarian Cancer RNA-Seq Sarcoma Serous Neoplasms Transcriptome

Most recents protocols related to «Sarcoma»

Example 7

Five groups including tucaresol, tucaresol plus PD-1 or PD-L1 antibody, tucaresol plus CTLA-4 antibody, CTLA-4 antibody plus PD-1 or PD-L1 antibody, and tucaresol plus plinabulin are tested to determine their effect in an animal xenograft model.

The combined treatment with tucaresol and the checkpoint inhibitor(s) is tested in comparison with the treatment with tucaresol alone, the treatment with checkpoint inhibitor alone, or combination of checkpoint inhibitors. The tests are performed using seven to ten-week old athymic (nu/nu) mice that were injected subcutaneously with human tumor cell lines (of either solid or liquid tumor origin, for example of breast, lung, colon, brain, liver, leukemia, myeloma, lymphoma, sarcoma, pancreatic or renal origin). Six to ten testing groups are prepared, and each group includes 10 mice.

Each treatment starts at tumor size between 40-150 mm3 and continues until Day 24-56, when the animals are necropsied. To determine the efficacy of each treatment, the following data are collected: mortality; the body weight of the mice assessed twice weekly both prior to treatments; the rate of tumor growth as determined by the tumor size measurement (twice every week); the tumor growth index; overall survival rate; the tumor weight at necropsy; and the time required to increase tumor size 10 fold.

Full text: Click here
Patent 2024
Animal Model Animals Autopsy Body Weight Brain Breast CD274 protein, human Cell Cycle Checkpoints Cell Line, Tumor Colon Combined Modality Therapy CTLA4 protein, human Genes, Neoplasm GZMB protein, human Heterografts Homo sapiens Immunoglobulins inhibitors Kidney Leukemia Liver Lung Lymphoma Mice, Nude Multiple Myeloma Mus Neoplasms Pancreas plinabulin Sarcoma Thymic aplasia tucaresol
Authorizations for reporting these three cases were granted by the Eastern Ontario Regional Forensic Unit and the Laboratoire de Sciences Judiciaires et de Médecine Légale du Québec.
The sampling followed a relatively standardized protocol for all TBI cases: samples were collected from the cortex and underlying white matter of the pre-frontal gyrus, superior and middle frontal gyri, temporal pole, parietal and occipital lobes, deep frontal white matter, hippocampus, anterior and posterior corpus callosum with the cingula, lenticular nucleus, thalamus with the posterior limb of the internal capsule, midbrain, pons, medulla, cerebellar cortex and dentate nucleus. In some cases, gross pathology (e.g. contusions) mandated further sampling along with the dura and spinal cord if available. The number of available sections for these three cases was 26 for case1, and 24 for cases 2 and 3.
For the detection of ballooned neurons, all HE or HPS sections, including contusions, were screened at 200×.
Representative sections were stained with either hematoxylin–eosin (HE) or hematoxylin-phloxin-saffron (HPS). The following histochemical stains were used: iron, Luxol-periodic acid Schiff (Luxol-PAS) and Bielschowsky. The following antibodies were used for immunohistochemistry: glial fibrillary acidic protein (GFAP) (Leica, PA0026,ready to use), CD-68 (Leica, PA0073, ready to use), neurofilament 200 (NF200) (Leica, PA371, ready to use), beta-amyloid precursor-protein (β-APP) (Chemicon/Millipore, MAB348, 1/5000), αB-crystallin (EMD Millipore, MABN2552 1/1000), ubiquitin (Vector, 1/400), β-amyloid (Dako/Agilent, 1/100), tau protein (Thermo/Fisher, MN1020 1/2500), synaptophysin (Dako/Agilent, ready to use), TAR DNA binding protein 43 (TDP-43) ((Protein Tech, 10,782-2AP, 1/50), fused in sarcoma binding protein (FUS) (Protein tech, 60,160–1-1 g, 1/100), and p62 (BD Transduc, 1/25). In our index cases, the following were used for the evaluation of TAI: β-APP, GFAP, CD68 and NF200; for the neurodegenerative changes: αB-crystallin, NF200, ubiquitin, tau protein, synaptophysin, TDP-43, FUS were used.
For the characterization of the ballooned neurons only, two cases of fronto-temporal lobar degeneration, FTLD-Tau, were used as controls. One was a female aged 72 who presented with speech difficulties followed by neurocognitive decline and eye movement abnormalities raising the possibility of Richardson’s disorder. The other was a male aged 67 who presented with a primary non-fluent aphasia progressing to fronto-temporal demαentia. In both cases, the morphological findings were characteristic of a corticobasal degeneration.
Full text: Click here
Publication 2023
Amyloid beta-Protein Precursor Amyloid Proteins Antibodies Broca Aphasia Cloning Vectors Congenital Abnormality Contusions Corpus Callosum Cortex, Cerebellar Cortex, Cerebral Corticobasal Degeneration Crystallins Dura Mater Eosin Eye Abnormalities Eye Movements Frontotemporal Lobar Degeneration FUBP1 protein, human Glial Fibrillary Acidic Protein Hematoxylin Immunohistochemistry Internal Capsule Iron Males Medial Frontal Gyrus Medulla Oblongata Mesencephalon Movement Movement Disorders neurofilament protein H Neurons Nucleus, Dentate Nucleus, Lenticular Occipital Lobe Periodic Acid phloxine Pons Proteins protein TDP-43, human RNA-Binding Protein FUS Saffron Sarcoma Seahorses Speech Spinal Cord Staining Synaptophysin Temporal Lobe Thalamus Ubiquitin White Matter Woman
Statistical analysis will be performed at the JCOG Data Center. The primary analysis will be performed 6 months after the end of accrual, when collection of the primary endpoint data for all enrolled patients is expected to be complete. The treatment protocol with the best point estimate of the HR for PFS, which is the primary endpoint of this study, will be the test treatment arm in a subsequent phase III trial. However, the treatment arm for the phase III trial will be decided comprehensively if the following results are obtained, taking into consideration endpoints other than PFS. First, the PFS obtained is substantially lower than expected (insufficient results for promising therapy). Second, the overall survival results differ significantly from those of PFS. Third, the frequency of adverse events among the arms differs significantly from the expected frequency.
For the primary analysis of PFS, the respective HRs of arms A to B and A to C will be calculated using an unstratified Cox proportional-hazards model for all enrolled patients, and the treatment with the best HR will be judged to be the most promising regimen. Since this study does not make judgments based on hypothesis testing, no significance level is set a priori, and no adjustment will be made for multiplicity.
Subgroup analyses based on the factors mentioned below are to be conducted, as necessary. The factors for which subgroup analyses are planned include age group 1 (< 40/ ≥ 40 years), age group 2 (< 70/ ≥ 70 years), sex (male/female), PS (0/1 and 2), histological type (liposarcoma/leiomyosarcoma/translocation-related sarcoma/other), distant metastasis 1 [(M1 and/or N1)/other], distant metastasis 2 [M1/(N1 and M0)/other], and doxorubicin (perioperative chemotherapy/palliative chemotherapy).
Full text: Click here
Publication 2023
Age Groups Arm, Upper Doxorubicin Leiomyosarcoma Liposarcoma Males Neoplasm Metastasis Patients Pharmacotherapy Sarcoma Translocation, Chromosomal Treatment Protocols Woman
This retrospective study was performed at the Department of Oncology, Istanbul
University Institute of Oncology. The inclusion criteria were an age of ≥65
years, diagnosis of soft tissue sarcoma, and follow-up or treatment for soft
tissue sarcoma. Patients aged <65 years, patients with bone and cartilage
tumors, and patients who had discontinued follow-up were not included in the
study. The files of patients from January 2000 to December 2020 were examined,
and patients who were deemed suitable for the study were included.
Publication 2023
Bones Diagnosis Neoplasms Patients Sarcoma
1. Patients with residual tumors, whether measurable or non-measurable after surgery
2. Endometrioid adenocarcinoma combined with other histological types
3. Non-endometrial carcinoma, for example, serous carcinoma, clear cell carcinoma, undifferentiated carcinoma, neuroendocrine carcinoma, or uterine sarcoma (including carcinosarcoma)
4. An interval between the operation and the start of adjuvant therapy exceeding 8 weeks
5. Previous pelvic radiotherapy
6. Previous history of a second malignancy, unless potentially curative treatment has been completed with no evidence of malignancy for 5 years
7. History of myocardial infarction, stroke, unstable angina, decompensated heart failure, or deep vein thrombosis
8. Impaired renal or cardiac function.
9. Known intolerance to intervention therapy or any excipients
10. Known psychiatric or substance abuse disorders that would interfere with the participant's ability to cooperate with the requirements of the study.
Publication 2023
Adenocarcinoma, Clear Cell Adenocarcinoma, Endometrioid Angina, Unstable Carcinoma, Neuroendocrine Carcinosarcoma Cerebrovascular Accident Congestive Heart Failure Endometrial Carcinoma Heart Kidney Malignant Neoplasms Myocardial Infarction Neoplasms, Second Primary Patients Pelvis Pharmaceutical Adjuvants Residual Tumor Sarcoma Serous Cystadenocarcinoma Substance Abuse Therapeutics Undifferentiated Carcinoma Uterus Veins

Top products related to «Sarcoma»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, Germany, United Kingdom, Japan, Italy, China, Macao, Switzerland, France, Canada, Sao Tome and Principe, Spain, Australia, Ireland, Poland, Belgium, Denmark, India, Sweden, Israel, Austria, Brazil, Czechia, Netherlands, Portugal, Norway, Holy See (Vatican City State), New Zealand, Hungary, Senegal, Argentina, Thailand, Singapore, Ukraine, Mexico
FBS, or Fetal Bovine Serum, is a commonly used cell culture supplement. It is derived from the blood of bovine fetuses and provides essential growth factors, hormones, and other nutrients to support the growth and proliferation of a wide range of cell types in vitro.
Sourced in United States, China, United Kingdom, Germany, France, Canada, Japan, Australia, Italy, Switzerland, Belgium, New Zealand, Austria, Netherlands, Israel, Sweden, Denmark, India, Ireland, Spain, Brazil, Norway, Argentina, Macao, Poland, Holy See (Vatican City State), Mexico, Hong Kong, Portugal, Cameroon
RPMI 1640 is a common cell culture medium used for the in vitro cultivation of a variety of cells, including human and animal cells. It provides a balanced salt solution and a source of essential nutrients and growth factors to support cell growth and proliferation.
Sourced in United States, China, Germany, United Kingdom, Japan, France, Canada, Australia, Italy, Switzerland, Belgium, New Zealand, Spain, Israel, Sweden, Denmark, Macao, Brazil, Ireland, India, Austria, Netherlands, Holy See (Vatican City State), Poland, Norway, Cameroon, Hong Kong, Morocco, Singapore, Thailand, Argentina, Taiwan, Province of China, Palestine, State of, Finland, Colombia, United Arab Emirates
RPMI 1640 medium is a commonly used cell culture medium developed at Roswell Park Memorial Institute. It is a balanced salt solution that provides essential nutrients, vitamins, and amino acids to support the growth and maintenance of a variety of cell types in vitro.
Sourced in United States, United Kingdom, Germany, France, Canada, Switzerland, Italy, Australia, Belgium, China, Japan, Austria, Spain, Brazil, Israel, Sweden, Ireland, Netherlands, Gabon, Macao, New Zealand, Holy See (Vatican City State), Portugal, Poland, Argentina, Colombia, India, Denmark, Singapore, Panama, Finland, Cameroon
L-glutamine is an amino acid that is commonly used as a dietary supplement and in cell culture media. It serves as a source of nitrogen and supports cellular growth and metabolism.
Sourced in United States, Japan, United Kingdom, Switzerland
MSTO-211H is a human malignant pleural mesothelioma cell line. It is a commonly used in vitro model for the study of mesothelioma.

More about "Sarcoma"

Sarcomas are a diverse group of malignant tumors that originate from mesenchymal tissues, such as bone, cartilage, fat, muscle, and blood vessels.
These cancers can occur in any part of the body and are categorized based on the specific cell type and tissue of origin.
Sarcomas often present diagnostic and treatment challenges, making research and innovation in this field crucial.
Identifying the best protocols and optimizing research approaches can help accelerate progress in sarcoma understanding and care.
Commonly used cell culture media like DMEM, RPMI 1640, and supplements such as L-glutamine, penicillin, and streptomycin are essential for sarcoma research.
Techniques like 3D cell culture using MSTO-211H cells can provide more relevant models for studying sarcoma biology and evaluating potential therapies.
Advances in sarcoma research, including the development of AI-powered tools like PubCompare.ai, are revolutionizing the field.
These innovative solutions enable researchers to easily locate the best protocols from literature, preprints, and patents through intelligent comparisons, helping to accelerate progress in sarcoma understanding and care.