The largest database of trusted experimental protocols
> Disorders > Pathologic Function > Hypertrophy

Hypertrophy

Hypertrophy is the increase in the size of a tissue or organ, typically due to an increase in the size of its constituent cells.
This process is commonly observed in skeletal muscle, where it can be induced through resistance training and other forms of exercise.
Hypertrophy can also occur in other tissues, such as the heart, in response to increased workload.
Understanding the mechanisms underlying hypertrophy is of great importance in fields such as sports science, rehabilitation, and the treatment of conditions like heart failure.
Researchers use a variety of techniques to study hypertrophy, including cell culture experiments, animal models, and analysis of human clinical data.
By optimizing research protocols and enhancing reproducibility, scientists can gain deeper insights into the complex process of hypertrophy and develop more effective interventions to promote muscle growth and improve overall health.

Most cited protocols related to «Hypertrophy»

Postnatal day 30 (P30) TWI mice and their WT littermates (5 for each experimental group processed in 5 different experimental sessions, every TWI with its WT littermate) and one P15 TWI mouse versus its WT littermate were perfused with a fixative solution (4% paraformaldehyde and 0.1%–1%–2.5% glutaraldehyde in phosphate buffer, pH 7.4). Sciatic nerves, spinal cords and gastrocnemius muscles were dissected and post-fixed for 4 hours at room temperature in the same fixative solution.
Spinal cords were dissected in the lumbar region, isolating four 1-mm-thick sections in the lumbar enlargement region and the gastrocnemius muscles were cut in small portions, approximately 1 mm3 in volume. Sciatic nerves were processed without further sectioning.
The selected tissues were further treated for epoxy resin embedding as previously described43 . Briefly, the samples were deeper fixed in 2–2.5% glutaraldehyde in cacodylate buffer (0.1 M, pH 7.4). After rinsing, specimens were post-fixed with osmium tetroxide (1%)-potassium ferricyanide (1%) in cacodylate buffer, rinsed again, en bloc stained with 3% uranyl acetate in ethanol, dehydrated and embedded in epoxy resin, that was baked for 48 h at 60 °C. Thin sections were obtained with an ultramicrotome (UC7, Leica Microsystems, Vienna, Austria) and collected on G300Cu grids (EMS). Finally, sections were examined with a Zeiss LIBRA 120 plus transmission electron microscope equipped with an in-column omega filter.
Full text: Click here
Publication 2016
Buffers Cacodylate Epoxy Resins Ethanol Fixatives Glutaral Hypertrophy Lumbar Region Mice, House Microtomy Muscle, Gastrocnemius Osmium Tetroxide paraform Phosphates potassium ferricyanide Sciatic Nerve Spinal Cord Tissues Transmission Electron Microscopy Ultramicrotomy uranyl acetate
All MRIs were assessed blinded to clinical information by one experienced neuroradiologist for the presence, location, and size of the recent symptomatic infarct and any other vascular lesions. A recent infarct was defined as a hyperintense area on DWI with corresponding reduced signal on the apparent diffusion coefficient image, with or without increased signal on FLAIR or T2-weighted imaging, that corresponded with a typical vascular territory.18 Recent small subcortical (lacunar) infarcts were defined as rounded or ovoid lesions with signal characteristics as above, >3- but <20-mm diameter, in the basal ganglia, internal capsule, centrum semiovale, or brainstem and carefully distinguished from WMH.1 (link) Cortical infarcts were defined as infarcts involving cortical ± adjacent subcortical tissue, or large (>2-cm) striatocapsular/subcortical lesions.14 (link) Lacunes were defined as rounded or ovoid lesions, >3- and <20-mm diameter, in the basal ganglia, internal capsule, centrum semiovale, or brainstem, of CSF signal intensity on T2 and FLAIR, generally with a hyperintense rim on FLAIR and no increased signal on DWI.14 (link) Microbleeds were defined as small (<5 mm), homogeneous, round foci of low signal intensity on gradient echo images in cerebellum, brainstem, basal ganglia, white matter, or cortico-subcortical junction, differentiated from vessel flow voids and mineral depositions in the globi pallidi.14 (link) Deep and periventricular WMH were both coded according to the Fazekas scale from 0 to 3.19 (link) We defined PVS as small (<3 mm) punctate (if perpendicular) and linear (if longitudinal to the plane of scan) hyperintensities on T2 images in the basal ganglia or centrum semiovale, and they were rated on a previously described, validated semiquantitative scale from 0 to 4.7 (link) Cerebral atrophy was classified for both deep (enlargement of the ventricles) and superficial (enlargement of the sulci) components on a 4-point scale (absent, mild, moderate, severe) in study 1, and on a modified 6-point version of the same scale in study 2.20 (link) The atrophy grade is determined by comparison with templates indicating normal to atrophied brains obtained in research into normal subjects on our scanner.20 (link) To merge the data from both studies, we condensed study 2's version to 4 categories (1 absent, 2–3 mild, 4 moderate, 5–6 severe). The intraclass correlation coefficient for WMH intraobserver rating (100 scans) was 0.96. The intrarater κ for PVS (50 scans) was 0.80 to 0.90 (unpublished data), for lacunes was 0.85 (unpublished data), and for microbleeds was 0.68 to 0.78.21 (link)
Publication 2014
Basal Ganglia Blood Vessel Brain Brain Stem Cerebellum Cortex, Cerebral Diffusion ECHO protocol Globus Pallidus Heart Ventricle Hypertrophy Infarction Infarction, Lacunar Internal Capsule Magnetic Resonance Imaging Minerals Radionuclide Imaging Tissues Urination White Matter
Briefly, the two key features of NASH, steatosis and inflammation, were categorized as follows: steatosis was determined by analyzing hepatocellular vesicular steatosis, i.e. macrovesicular steatosis and microvesicular steatosis separately, and by hepatocellular hypertrophy as defined below (Fig. 2). Inflammation was scored by analyzing the amount of inflammatory cell aggregates (Fig. 2). The proposed rodent scoring system is shown in Table 4 and options for its use in diagnosis are shown in S1 Fig. The purpose of this scoring system is however not to derive a single score, but to score the individual features.
Macrovesicular steatosis and microvesicular steatosis were both separately scored and the severity was graded, based on the percentage of the total area affected, into the following categories: 0 (<5%), 1 (5–33%), 2 (34–66%) and 3 (>66%). The difference between macrovesicular and microvesicular steatosis was defined by whether the vacuoles displaced the nucleus to the side (macrovesicular) or not (microvesicular). Similarly, the level of hepatocellular hypertrophy, defined as cellular enlargement more than 1.5 times the normal hepatocyte diameter, was scored, based on the percentage of the total area affected, into the following categories: 0 (<5%), 1 (5–33%), 2 (34–66%) and 3 (>66%). For hepatocellular hypertrophy the evaluation was merely based on abnormal enlargement of the cells, irrespective of rounding of the cells and/or changes in cytoplasm or the number of vacuoles, and is therefore not a substitute of ballooning. The unweight sum of the scores for steatosis (macrovesicular steatosis, microvesicular steatosis and hypertrophy) thus ranged from 0–9. Both steatosis and hypertrophy were evaluated at a 40 to 100× magnification and only the sheets of hepatocytes were taken into account (terminal hepatic venules and portal tracts etc were excluded).
Inflammation was evaluated by counting the number of inflammatory foci per field using a 100 x magnification (view size of 3.1 mm2). A focus was defined a cluster, not a row, of ≥5 inflammatory cells. Five different fields were counted and the average was subsequently scored into the following categories: normal (<0.5 foci), slight (0.5–1.0 foci), moderate (1.0–2.0 foci), severe (>2.0 foci).
Hepatic fibrosis was identified using Sirius Red stained slides at 40 x magnification and evaluated by scoring whether pathologic collagen staining was absent (only in vessels) or collagen staining observed within the liver slide, the latter further defined as mild, moderate or massive. In addition, the percentage of the total area affected was evaluated using using image analysis of surface area on Sirius red stained slides.
Full text: Click here
Publication 2014
Blood Vessel Cell-Derived Microparticles Cell Enlargement Cell Nucleus Cells Collagen Cytoplasm Diagnosis Fibrosis, Liver Hepatocyte Hypertrophy Inflammation Liver Nonalcoholic Steatohepatitis Portal System Rodent Steatohepatitis Vacuole Venules
To validate the scoring system, 36 slides of mouse livers covering the whole spectrum of NAFLD, were blindly analyzed by a board-certified pathologist (A.L.M), a clinical pathologist (A.D.) and nine scientists with basic histological experience. For the validation, the observers estimated the percentage of macrovesicular steatosis, microvesicular steatosis and hypertrophy (relative scale) and the number of inflammatory foci per field (absolute scale), instead of using the different categories for steatosis and inflammation (ordinal measure). Additionally, quantification of the steatosis and inflammation was determined by one observer during two separate assessments that were separated by an interval longer than 3 months.
Full text: Click here
Publication 2014
Cell-Derived Microparticles Hypertrophy Inflammation Liver Mus Non-alcoholic Fatty Liver Disease Pathologists Steatohepatitis
The participants in the SICCA cohort have been enrolled since 2004 at five collaborating academically-based research groups, located in Argentina, China, Denmark, Japan and the United States, and directed from the University of California, San Francisco (12 (link)) (Table 1). Subsequently, additional research groups joined the SICCA project: in 2007, from the United Kingdom and in 2009, from India and two additional sites in the United States.
To be eligible for the SICCA registry, participants must be at least 21 years of age and have at least one of the following: symptoms of dry eyes or dry mouth; a previous suspicion or diagnosis of SS; elevated serum antinuclear antibodies (ANA), positive rheumatoid factor (RF), or anti-SSA/B; bilateral parotid enlargement in a clinical setting of SS; a recent increase in dental caries; or have diagnoses of rheumatoid arthritis or systemic lupus erythematosus and any of the above. The rationale for these eligibility criteria is that only patients with such characteristics would be evaluated for SS or considered for enrollment in a clinical trial designed to evaluate a potential therapeutic agent for SS. Therefore our classification criteria target individuals with signs and symptoms that may be suggestive of SS, not the general population.
Participants are recruited through local or national SS patient support groups, healthcare providers, public media, and populations served by all nine SICCA research groups. Exclusion criteria include known diagnoses of: hepatitis C, HIV, sarcoidosis, amyloidosis, active tuberculosis, graft versus host disease, autoimmune connective tissue diseases other than rheumatoid arthritis or lupus; past head and neck radiation treatment; current treatment with daily eye drops for glaucoma; corneal surgery in the last 5 years to correct vision; cosmetic eyelid surgery in the last 5 years; or physical or mental condition interfering with successful participation in the study. Contact lens wearers are asked to discontinue wear for 7 days before the SICCA examination. We do not exclude participants taking prescription drugs that may affect salivary or lacrimal secretion, but record their use and all other medications currently taken.
Publication 2012
Administration, Ophthalmic Amyloidosis Antibodies, Antinuclear Connective Tissue Diseases Contact Lenses Cornea Dental Caries Diagnosis Dry Eye Eligibility Determination Eyelids Glaucoma Graft-vs-Host Disease Head Health Personnel Hepatitis C virus Hypertrophy Lupus Erythematosus, Systemic Lupus Vulgaris Neck Operative Surgical Procedures Parotid Gland Patients Pharmaceutical Preparations Physical Examination Prescription Drugs Radiotherapy Rheumatoid Arthritis Rheumatoid Factor Sarcoidosis secretion Serum Therapeutics Tuberculosis Vision Xerostomia

Most recents protocols related to «Hypertrophy»

Not available on PMC !

Example 6

Increasing the Rate of Muscle Hypertrophy: Using the standard protocol, described above, subjects are instructed to follow a diet and exercise regimen for 4 weeks, including resistance training three days per week. At the completion of the study, the circumference of subjects' biceps, quadriceps, and chest are measured. The test group shows an average increase in circumference of about 5% relative to the control group.

Full text: Click here
Patent 2024
Chest Chromium Diet Hypertrophy Muscle Tissue Quadriceps Femoris Treatment Protocols

Example 6

4 mm2 cartilage explants were taken from non-lesion areas of OA patient's knee articular cartilage (n=5) and randomly assigned to different experimental treatment conditions (4 explants per treatment group). After a 24 h equilibration period the explants were treated with BMP-7 (1 nM) or the 12-mer peptide according to SEQ ID NO: 16 (10 nM) for 24 h. Hypertrophic gene expression was determined via qRT-PCR and normalized for 28S rRNA levels. After treatment with BMP-7 or the 12 mer we observed a downregulation of pro-hypertrophic genes, such as Col10a1 (FIG. 10A) and MMP13 (FIG. 10B). These results are in line with the effects described above and show the BMP-7 mimicking bioactivity of the peptides according to the invention.

Full text: Click here
Patent 2024
Aftercare Bone Morphogenetic Protein 7 Cartilage Cartilages, Articular Down-Regulation Gene Expression Genes, vif Hypertrophy Knee Joint MMP13 protein, human Peptides RNA, Ribosomal, 28S Therapies, Investigational

Example 5

Isolated chondrocytes from OA patients (n=6) were treated with BMP-7 (1 nM) or the 12-mer peptide according to SEQ ID NO: 16 (1 nM) for 24 h. Pro-chondrogenic (FIG. 9A) and hypertrophic (FIGS. 9B, 9C and 9D) gene expression was determined via qRT-PCR and normalized for 28S rRNA levels. These results confirmed our previous findings that BMP-7 or the 12 mer induced an upregulation of pro-chondrogenic genes, such as Col2a1 (A), and a downregulation of pro-hypertrophic genes, such as COL10A1, COX-2 and RUNX2 (B, C, D). These results show the BMP-7 mimicking bioactivity of the core sequence from the region-A peptide.

Full text: Click here
Patent 2024
Bone Morphogenetic Protein 7 Chondrocyte Chondrogenesis Down-Regulation Figs Gene Expression Genes Genes, vif Hypertrophy Patient Isolation Peptides PTGS2 protein, human RNA, Ribosomal, 28S RUNX2 protein, human Up-Regulation (Physiology)

Example 2

ATDC5 cells were differentiated using standard protocols for 8 days in the presence or absence of 1 nM peptides from region A. Peptides were added at start of differentiation and at every medium change (multiple) or only at start of differentiation and not during every medium change (single). At day 8 in differentiation, samples were harvested and analysed for genes COL10A1, ALP, RUNX2, ACAN and BapX/Nkx3.2 by RT-qPCR (corrected for b-actin expression and relative to t=0).

Full text: Click here
Patent 2024
Actins Bone Morphogenetic Protein 7 Chondrogenesis Genes Hypertrophy Peptides RUNX2 protein, human
Not available on PMC !

Example 6

Increasing the Rate of Muscle Hypertrophy: Using the standard protocol, described above, subjects are instructed to follow a diet and exercise regimen for 4 weeks, including resistance training three days per week. At the completion of the study, the circumference of subjects' biceps, quadriceps, and chest are measured. The test group shows an average increase in circumference of about 5% relative to the control group.

Full text: Click here
Patent 2024
Chest Chromium Diet Hypertrophy Muscle Tissue Quadriceps Femoris Treatment Protocols

Top products related to «Hypertrophy»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Spain, Australia, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, China, Macao, Sao Tome and Principe, United Kingdom, Japan, Canada, Switzerland, Australia, France
Ang II is a peptide hormone that is involved in the regulation of blood pressure and fluid balance in the body. It is a key component of the renin-angiotensin-aldosterone system (RAAS), which plays a central role in the homeostatic control of blood pressure, fluid, and electrolyte balance. Ang II acts on specific receptors to exert its physiological effects.
Sourced in United States, Germany, United Kingdom, China, Japan, Italy, Sao Tome and Principe, Macao, France, Australia, Switzerland, Canada, Denmark, Spain, Israel, Belgium, Ireland, Morocco, Brazil, Netherlands, Sweden, New Zealand, Austria, Czechia, Senegal, Poland, India, Portugal
Dexamethasone is a synthetic glucocorticoid medication used in a variety of medical applications. It is primarily used as an anti-inflammatory and immunosuppressant agent.
Sourced in United States, Germany, Italy, Canada, United Kingdom, France, Netherlands, Switzerland, Sweden, Belgium, Australia, Japan, China, India, Spain, Denmark, Austria, Norway
The IScript cDNA Synthesis Kit is a reagent kit used for the reverse transcription of RNA into complementary DNA (cDNA). The kit contains all the necessary components to perform this reaction, including a reverse transcriptase enzyme, reaction buffer, and oligo(dT) primers.
Sourced in United States, United Kingdom, Germany, New Zealand, Japan, China, France, Australia, Italy, Spain, Switzerland, Canada, Netherlands, Denmark, Austria, Belgium, Ireland, Israel, Brazil
Horse serum is a biological fluid derived from the blood of horses. It contains a complex mixture of proteins, including immunoglobulins, hormones, and other biomolecules. Horse serum is commonly used as a supplement in cell culture media to support the growth and maintenance of various cell types.

More about "Hypertrophy"

Hypertrophy, the increase in the size of a tissue or organ, is a fundamental process in fields like sports science, rehabilitation, and the treatment of conditions like heart failure.
This growth is often observed in skeletal muscle, where it can be induced through resistance training and other forms of exercise.
Understanding the mechanisms underlying hypertrophy is crucial for optimizing muscle growth and improving overall health.
Researchers utilize various techniques to study this complex process, including cell culture experiments, animal models, and analysis of human clinical data.
To enhance the reproducibility and accuracy of these studies, researchers may employ tools and reagents like FBS, TRIzol, Penicillin/streptomycin, RNeasy Mini Kit, DMEM, Ang II, Dexamethasone, and the IScript cDNA synthesis kit.
Cardiac hypertrophy, the increase in the size of the heart, can also occur in response to increased workload, such as with conditions like heart failure.
By understanding the underlying mechanisms of hypertrophy, scientists can develop more effective interventions to promote muscle growth and improve cardiovascular health.
At PubCompare.ai, we offer an AI-driven platform that helps researchers optimize their hypertrophy studies.
Our advanced comparison tools can locate the best protocols from literature, pre-prints, and patents, enabling scientists to enhance reproducibility and accuracy in their research.
Experience the future of hypertrophy optimization with PubCompare.ai today.