As a prerequisite for producing and analyzing tract diffusion profiles, we first assessed the reliability of the automated tract segmentation algorithm in identifying the tracts. We reasoned that the algorithm should produce consistent results if multiple scans were obtained for the same individual, akin to test-retest reliability in clinical assessment. Our DWI protocol included four independent repeats of a 30-direction DWI sequence. For each subject, we divided the data into two sets; we averaged scans 1 and 2 as set 1, and scans 3 and 4 as set 2. We then processed each data set with AFQ and extracted the mean FA value for each tract in each individual for the two independent scan sessions. We computed the scan-rescan reliability independently for each tract and found that the median correlation for FA values for each tract from set 1 and set 2 was r = 0.93 with a standard deviation of 0.07. This result demonstrates that the measurements generated by AFQ are highly reliable within an individual across scan sessions. Also note that the correlation reported here represents the reliability of the AFQ analysis for a DWI sequence with 2, 30-direction data sets averaged together rather than the full sequence that we typically use which averages 4, 30-direction data sets. The scan rescan reliability would be even higher if all 4 scans were averaged together.
As a more demanding measure of reliability, we then compared the mean FA of tracts obtained by two methods–manual segmentation, considered the gold standard for tract identification, (Wakana et al. 2007) and AFQ tract identification. For this analysis we selected six tracts: left and right inferior frontal-occipital fascicle, left and right uncinate fasciculus and left and right superior longitudinal fasciculus. To test the automated method in a clinical sample, we assessed the degree of correlation between tract mean FA measurements from the manual and automated methods in the preterm children. These patients had a range of white matter abnormalities on conventional MRI scans ranging from normal to severe injury, including 3 with severe ventricular dilitation [32] . Correlations between the manual and automated methods were very high for each tract. The median correlation between the FA values obtained from the two methods was r = 0.98 with a standard deviation of 0.04.Figure 9 shows the tract mean FA values obtained from manual segmentation plotted against the values from the AFQ automated segmentation. For nearly every subject the values lie on the identity line demonstrating near perfect correspondence between the methods. Hence The AFQ automated fiber tract segmentation is consistent with the time-consuming manual techniques that have served as the gold standard.
The subject that shows a discrepancy between the manual and automated methods for the right uncinate fasciculus has severe ventricular dilitation. For this subject the automated uncinate ROI placement was imperfect due to extremely abnormal brain shape. Most of the fiber tract segmentations were accurate for these severely abnormal brains, however it is important to manually inspect the ROIs and resulting fiber groups for patients with severe abnormalities because misalignment is possible.
As a more demanding measure of reliability, we then compared the mean FA of tracts obtained by two methods–manual segmentation, considered the gold standard for tract identification, (Wakana et al. 2007) and AFQ tract identification. For this analysis we selected six tracts: left and right inferior frontal-occipital fascicle, left and right uncinate fasciculus and left and right superior longitudinal fasciculus. To test the automated method in a clinical sample, we assessed the degree of correlation between tract mean FA measurements from the manual and automated methods in the preterm children. These patients had a range of white matter abnormalities on conventional MRI scans ranging from normal to severe injury, including 3 with severe ventricular dilitation [32] . Correlations between the manual and automated methods were very high for each tract. The median correlation between the FA values obtained from the two methods was r = 0.98 with a standard deviation of 0.04.
The subject that shows a discrepancy between the manual and automated methods for the right uncinate fasciculus has severe ventricular dilitation. For this subject the automated uncinate ROI placement was imperfect due to extremely abnormal brain shape. Most of the fiber tract segmentations were accurate for these severely abnormal brains, however it is important to manually inspect the ROIs and resulting fiber groups for patients with severe abnormalities because misalignment is possible.
Full text: Click here