MI data were collected on a normal human forearm over a 72×48 mm field of view. Four evenly spaced spatial frequencies between 0 and 0.15 mm−1 were collected and analyzed. The imaging system was identical to that described earlier, except for the inclusion of a 640±10 nm bandpass detection filter and crossed linear polarizers, which reject specular reflection from rough surfaces and maximize our sensitivity to the diffuse component of the light. In idealized liquid phantom experiments, we have performed measurements with and without crossed polarizers and found the difference in recovered optical properties to be typically less than 2 to 3%.
In order to demonstrate the sensitivity of our system to physiological perturbations, we performed a standard venous occlusion study on a 29×40 mm region of the volar forearm. Measurements were performed at a wavelength of 800±10 nm, near the hemoglobin isosbestic point of 805 nm. Measured changes in absorption at this wavelength are insensitive to oxygenation and therefore reflect only that of total hemoglobin. Multifrequency reflectance data at 0 and 0.135 mm−1 were acquired every 4 s for a period of 13 min. After 2.5 min of baseline acquisition, an arm cuff was pressurized to 100 mm Hg for 6.5 min and subsequently released at minute 9.
In order to demonstrate the sensitivity of our system to physiological perturbations, we performed a standard venous occlusion study on a 29×40 mm region of the volar forearm. Measurements were performed at a wavelength of 800±10 nm, near the hemoglobin isosbestic point of 805 nm. Measured changes in absorption at this wavelength are insensitive to oxygenation and therefore reflect only that of total hemoglobin. Multifrequency reflectance data at 0 and 0.135 mm−1 were acquired every 4 s for a period of 13 min. After 2.5 min of baseline acquisition, an arm cuff was pressurized to 100 mm Hg for 6.5 min and subsequently released at minute 9.