The DESeq2 package comes with a detailed vignette, which works through a number of example differential expression analyses on real datasets, and the use of the rlog transformation for quality assessment and visualization. A single function, called DESeq, is used to run the default analysis, while lower-level functions are also available for advanced users.
Genome
The genome contains the instructions needed for the development and functioning of living beings.
Genomes vary widely in size and organization, from the small, circular genomes of viruses to the large, linear genomes of plants and animals.
Understanding the genome is crucial for advancements in fields like genetics, genomics, and molecular biology, enabling researchers to study the genetic basis of traits, diseases, and evolutionary relationships.
The exploration and analysis of genomes continues to be an area of intense scientific investigation and discovery.
Most cited protocols related to «Genome»
The DESeq2 package comes with a detailed vignette, which works through a number of example differential expression analyses on real datasets, and the use of the rlog transformation for quality assessment and visualization. A single function, called DESeq, is used to run the default analysis, while lower-level functions are also available for advanced users.
ChIP-chip data for FoxA1 and controls in MCF7 cells were previously published [1 (link)], and their corresponding ChIP-Seq data were generated specifically for this study. Around 3 ng FoxA1 ChIP DNA and 3 ng control DNA were used for library preparation, each consisting of an equimolar mixture of DNA from three independent experiments. Libraries were prepared as described in [8 (link)] using a PCR preamplification step and size selection for DNA fragments between 150 and 400 bp. FoxA1 ChIP and control DNA were each sequenced with two lanes by the Illumina/Solexa 1G Genome Analyzer, and yielded 3.9 million and 5.2 million uniquely mapped tags, respectively.
Summary of supported operations available in the BEDTools suite
Utility | Description |
---|---|
Returns overlaps between two BED files. | |
Returns overlaps between a BEDPE file and a BED file. | |
Converts BAM alignments to BED or BEDPE format. | |
pairToPair | Returns overlaps between two BEDPE files. |
windowBed | Returns overlaps between two BED files within a user-defined window. |
closestBed | Returns the closest feature to each entry in a BED file. |
subtractBed* | Removes the portion of an interval that is overlapped by another feature. |
mergeBed* | Merges overlapping features into a single feature. |
coverageBed* | Summarizes the depth and breadth of coverage of features in one BED file relative to another. |
genomeCoverageBed | Histogram or a ‘per base’ report of genome coverage. |
fastaFromBed | Creates FASTA sequences from BED intervals. |
maskFastaFromBed | Masks a FASTA file based upon BED coordinates. |
shuffleBed | Permutes the locations of features within a genome. |
slopBed | Adjusts features by a requested number of base pairs. |
sortBed | Sorts BED files in useful ways. |
linksBed | Creates HTML links from a BED file. |
complementBed* | Returns intervals not spanned by features in a BED file. |
Utilities in bold support sequence alignments in BAM. Utilities with an asterisk were compared with Galaxy and found to yield identical results.
Most recents protocols related to «Genome»
Example 6
TbpB and NMB0313 genes were amplified from the genome of Neisseria meningitidis serotype B strain B16B6. The LbpB gene was amplified from Neisseria meningitidis serotype B strain MC58. Full length TbpB was inserted into Multiple Cloning Site 2 of pETDuet using restriction free cloning ((F van den Ent, J. Löwe, Journal of Biochemical and Biophysical Methods (Jan. 1, 2006)).). NMB0313 was inserted into pET26, where the native signal peptide was replaced by that of pelB. Mutations and truncations were performed on these vectors using site directed mutagenesis and restriction free cloning, respectively. Pairs of vectors were transformed into E. coli C43 and were grown overnight in LB agar plates supplemented with kanamycin (50 μg/mL) and ampicillin (100 μg/mL).
tbpB genes were amplified from the genomes of M. catarrhalis strain 035E and H. influenzae strain 86-028NP and cloned into the pET52b plasmid by restriction free cloning as above. The corresponding SLAMs (M. catarrhalis SLAM 1, H. influenzae SLAM1) were inserted into pET26b also using restriction free cloning. A 6His-tag was inserted between the pelB and the mature SLAM sequences as above. Vectors were transformed into E. coli C43 as above.
Cells were harvested by centrifugation at 4000 g and were twice washed with 1 mL PBS to remove any remaining growth media. Cells were then incubated with either 0.05-0.1 mg/mL biotinylated human transferrin (Sigma-aldrich T3915-5 MG), α-TbpB (1:200 dilution from rabbit serum for M. catarrhalis and H. influenzae; 1:10000 dilution from rabbit serum for N. meningitidis), or α-LbpB (1:10000 dilution from rabbit serum-obtained a gift from J. Lemieux) or α-fHbp (1:5000 dilution from mouse, a gift from D. Granoff) for 1.5 hours at 4° C., followed by two washes with 1 mL of PBS. The cells were then incubated with R-Phycoerythrin-conjugated Streptavidin (0.5 mg/ml Cedarlane) or R-phycoerythrin conjugated Anti-rabbit IgG (Stock 0.5 mg/ml Rockland) at 25 ug/mL for 1.5 hours at 4° C. The cells were then washed with 1 mL PBS and resuspended in 200 uL fixing solution (PBS+2% formaldehyde) and left for 20 minutes. Finally, cells were washed with 2×1 mL PBS and transferred to 5 mL polystyrene FACS tubes. The PE fluorescence of each sample was measured for PE fluorescence using a Becton Dickinson FACSCalibur. The results were analyzed using FLOWJO software and were presented as mean fluorescence intensity (MFI) for each sample. For N. meningtidis experiments, all samples were compared to wildtype strains by normalizing wildtype fluorescent signals to 100%. Errors bars represent the standard error of the mean (SEM) across three experiments. Results were plotted statistically analysed using GraphPad Prism 5 software. The results shown in
Example 2
iPS cells were prepared according to protocols known in the art and seeded in a Geltrex®-Matrix coated 12-well culture dish. Transfection was performed in iPSCs with 3 ul of Lipofectamine® 2000 or 3 ul of Lipofectamine® 3000 as indicated and according to manufacturer's instructions, to deliver a GeneArt® CRISPR Nuclease vector targeting the HPRT locus. Transfection was also performed with GeneArt® CRISPR Nuclease RNA editing system targeting the HPRT locus and 3 ul of Formulation 21 lipid aggregate complex. RNA editing system utilizes a Cas9 mRNA, which was prepared via in vitro transcription with the Ambion® mMESSAGE mMACHINE® Kit, and a gRNA which was transcribed using the Ambion® MEGAshortscript™ Kit. Cells were harvested 72-hours post-transfection and cleavage efficiency was determined using the GeneArt® Genomic Cleavage Detection Kit.
Results are shown in
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, the descriptions and examples should not be construed as limiting the scope of the invention. The disclosures of all patent and scientific literature cited herein are expressly incorporated in their entirety by reference.
Example 2
To identify genetic marker(s) associated with the ULA trait, test crosses of FC401 mutant #1 (MS4144) were made with variety Red Russian and the F1s were selfed to generate F2 seed. Three hundred and thirty seven F2 plants were grown in the field and the alkaloids were analyzed individually. Depending on the anatabine levels, the mapping populations were grouped into ULA plants and normal plants (
PCR reactions were performed in 25 μl final volumes which contained 25-50 ng of template DNA, 12.5 μl 2× Amplitag PCR master mix ((Applied Biosystems [ABI]), 0.2 μM labeled primers (ABI), 1 μl 100% DMSO (Fisher Scientific), and 8 μl H2O (DNase/RNase free). Thermocycling conditions consisted of a 15 min incubation at 95° C.; followed by 34 cycles of 1 min at 94° C., 2 min at 60° C., 1 min at 72° C.; with a final reaction step of 60° C. for 30 min. All completed PCR reactions were diluted 1:50 with deionized water. Two microliters of diluted product was then combined with 9.75 μl HiDi Formamide (ABI) and 0.25 μl GeneScan 500 LIZ (ABI) size standard. Fragment analyses were performed. Samples were separated using a 36 cm capillary array in an ABI 3730 DNA Analyzer. Generated amplicons were analyzed using the “Local Southern Method” and the default analysis settings within GeneMapper v. 3.5 software (ABI). Final allele calls were standardized to an internal DNA control and based on the ABI 3730 DNA Analyzer.
Example 8
In selecting genomes for a given bacterial species where a SLAM homolog was identified, preference was given to reference genomes that contained fully sequenced genomes. SLAM homologs were identified using iterative Blast searches into closely related species to Neisseria to more distantly related species. For each of the SLAM homologs identified in these species, the corresponding genomic record (NCBI genome) was used to identify genes upstream and downstream along with their corresponding functional annotations (NCBI protein database, Ensembl bacteria). In a few cases, no genes were predicted upstream or downstream of the SLAM gene as they were too close to the beginning or end of the contig, respectively, and thus these sequences were ignored.
Neighbouring genes were analyzed for 1) an N-terminal lipobox motif (predicted using LipoP, SignalP), and 2) a solute binding protein, Tbp-like (InterPro signature: IPR or IPR011250), or pagP-beta barrel (InterPro signature: IPR011250) fold. If they contained these elements, we identified the adjacent genes as potential SLAM-dependent surface lipoproteins.
A putative SLAM (PM1515, SEQ ID NO: 1087) was identified in Pasteurella multocida using the Neisseria SLAM as a search. The putative SLAM (PM1515, SEQ ID NO: 1087) was adjacent to a newly predicted lipoprotein gene with unknown function (PM1514, SEQ ID NO: 1083) (
The putative SLAM (PM1515, SEQ ID NO: 1087) and its adjacent lipoprotein (PM1514, SEQ ID NO: 1083) were cloned into pET26b and pET52b, respectively, as previously described and transformed into E. coli C43 and grown overnight on LB agar supplemented with kanamycin (50 ug/ml) and ampicillin (100 ug/ml).
Cells were grown in auto-induction media for 18 hours at 37 C and then harvested, washed twice in PBS containing 1 mM MgCl2, and labeled with α-Flag (1:200, Sigma) for 1 hr at 4 C. The cells were then washed twice with PBS containing 1 mM MgCl2 and then labeled with R-PE conjugated α-mouse IgG (25 ug/mL, Thermo Fisher Scientific) for 1 hr at 4 C. following straining, cells were fixed in 2% formaldehyde for 20 minutes and further washed with PBS containing 1 mM MgCl2. Flow Cytometry was performed with a Becton Dickinson FACSCalibur and the results were analyzed using FLOWJO software. Mean fluorescence intensity (MFI) was calculated using at least three replicates was used to compare surface exposure the lipoprotein in strains either containing or lacking the putative SLAM (PM1515) and are shown in
Example 3
The genes for Candida antartica lipases A and B, human transferrin, and the human CH2 domain from IgG were integrated into the SuperM5 genome using standard transformation methods. In all cases significant amounts of protein were produced and secreted into the medium. Transformed strains and media-containing protein were tested for glycan analysis using previously published methods. In all cases, the glycan profiles for the test proteins and for the strain glycoproteins demonstrated a mannose-5 glycan structure with no other higher mannose structures detected by the methods used.
Top products related to «Genome»
More about "Genome"
This genetic blueprint encompasses all the genes and their corresponding nucleotide sequences, providing the instructions necessary for the development and functioning of living beings.
Genomes can vary significantly in size and organization, ranging from the compact, circular genomes of viruses to the expansive, linear genomes of plants and animals.
Understanding the genome is crucial for advancements in fields like genetics, genomics, and molecular biology, as it enables researchers to study the genetic basis of traits, diseases, and evolutionary relationships.
The exploration and analysis of genomes continues to be an area of intense scientific investigation and discovery.
Techniques such as TRIzol reagent, HiSeq 2000 and 2500 sequencing platforms, QIAamp DNA Mini Kit, RNeasy Mini Kit, DNeasy Blood and Tissue Kit, and the Agilent 2100 Bioanalyzer are commonly utilized in genome research to extract, purify, and analyze genetic material.
Additionally, the Wizard Genomic DNA Purification Kit is a versatile tool for isolating high-quality genomic DNA from a variety of sample types.
These advancements in genomic technologies have greatly enhanced our ability to understand the complex genetic makeup of living organisms and drive breakthroughs in fields like personalized medicine, evolutionary biology, and agricultural biotechnology.
Disocver how PubCompare.ai leverages AI-driven protocol comparisons to help researchers optimize their genome research.
Locate the most reproducible and accurate protocols from literature, pre-prints, and patents.
PubCompare.ai's intelligent system identifies the best protocols and products to enhance your research productivity and accuracy.
Experiance enhanced genome research with PubCompare.ai.