The largest database of trusted experimental protocols
> Living Beings > Age Group > Adult

Adult

Adult.
A human being who has attained the state of full physical development and maturity.
This term is most often used for a person past the stage of adolescence, typically 18 years of age or older.
Experienxe the power of AI-assisted research to identify the most effective adult-focused products and procedures with PubCompare.ai, an innovative protocol comparison tool that enhances reproducibility and research accuracy.

Most cited protocols related to «Adult»

The COG profiles of the nine adult and four unweaned infant microbiomes were obtained from the supplemental material of [73 (link)] and used unmodified in this study.
Full text: Click here
Publication 2011
Adult Infant Microbiome
All experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Allen Institute for Brain Science in accordance with NIH guidelines. All characterization was done using adult mice around ages P56 or older. The mice that were characterized were in a mixed genetic background, containing 50–75% C57BL/6 background and the remainders of 129 or other backgrounds from the various Cre lines. For systematic characterization of fluorescent proteins either by their native fluorescence or IHC, perfused brains were cryosectioned using a tape transfer technique, sections were then DAPI stained directly or following antibody staining, and images were captured using automated fluorescent microscopy. Microtome sections of 100-μm thickness from perfused brains were used for confocal imaging of fluorescently labeled cells. For systematic characterization of gene expression by colorimetric ISH or DFISH, the Allen Institute established pipelines for tissue processing, probe hybridization, image capture and data processing were utilized. Informatics signal identification, mapping, and quantification used the Allen Mouse Brain Atlas spatial mapping platform24 (link), 29 . In this pipeline, image series are preprocessed (white-balanced and cropped), then registered to a three-dimensional informatics reference atlas of the C57BL/6J mouse brain28 . This registration enables data to be displayed in 2D sections or reconstructed 3D volumes.
Publication 2009
Acid Hybridizations, Nucleic Adult Brain Cells Colorimetry DAPI Fluorescence Gene Expression Genetic Background Immunoglobulins Institutional Animal Care and Use Committees Mice, Inbred C57BL Mice, Laboratory Microscopy Microtomy Proteins Tissues
Carcinogenic and mutagenic risk assessments15 (link),60 (link)–63 (link),67 (link)–69 (link) induced by inhalation of PM2.5-bound enriched with selected nitro-PAHs (1-NPYR, 2-NPYR, 2-NFLT, 3-NFLT, 2-NBA, and 3-NBA) and PAHs (PYR, FLT, BaP, and BaA) were estimated in the bus station and coastal site samples according to calculations done by Wang et al.60 (link), Nascimento et al.61 (link), and Schneider et al.67 (link) PAH and PAH derivatives risk assessment is done in terms of BaP toxicity, which is well established67 (link)–73 (link). The daily inhalation levels (EI) were calculated as: EI=BaPeq×IR=(Ci×TEFi)×IR where EI (ng person−1 day−1) is the daily inhalation exposure, IR (m³ d−1) is the inhalation rate (m³ d−1), BaPeq is the equivalent of benzo[a]pyrene (BaPeq = Σ Ci × TEFi) (in ng m−3), Ci is the PM2.5 concentration level for a target compound i, and TEFi is the toxic equivalent factor of the compound i. TEF values were considered those from Tomaz et al.15 (link), Nisbet and LaGoy69 (link), OEHHA72 , Durant et al.73 (link), and references therein. EI in terms of mutagenicity was calculated using equation (1), just replacing the TEF data by the mutagenic potency factors (MEFs) data, published by Durant et al.73 (link). Individual TEFs and MEFs values and other data used in this study are described in SI, Table S4.
The incremental lifetime cancer risk (ILCR) was used to assess the inhalation risk for the population in the Greater Salvador, where the bus station and the coastal site are located. ILCR is calculated as: ILCR=(EI×SF×ED×cf×EF)/(AT×BW) where SF is the cancer slope factor of BaP, which was 3.14 (mg kg−1 d−1)−1 for inhalation exposure60 (link), EF (day year−1) represents the exposure frequency (365 days year−1), ED (year) represents exposure duration to air particles (year), cf is a conversion factor (1 × 10−6), AT (days) means the lifespan of carcinogens in 70 years (70 × 365 = 25,550 days)70 ,72 , and BW (kg) is the body weight of a subject in a target population71 .
The risk assessment was performed considering four different target groups in the population: adults (>21 years), adolescents (11–16 years), children (1–11 years), and infants (<1 year). The IR for adults, adolescents, children, and infants were 16.4, 21.9, 13.3, 6.8 m3 day−1, respectively. The BW was considered 80 kg for adults, 56.8 kg for adolescents, 26.5 kg for children and 6.8 kg for infants70 .
Full text: Click here
Publication 2019
Adolescent Adult Benzo(a)pyrene Body Weight Carcinogens Child derivatives Factor X Fibrinogen fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether Health Risk Assessment Infant Inhalation Inhalation Exposure Malignant Neoplasms Mutagens Polycyclic Hydrocarbons, Aromatic Population at Risk Population Group Respiratory Rate
Anatomically comprehensive transcriptional profiling of adult human brains used high-throughput tissue processing and data generation pipelines for post-mortem brain imaging, anatomical delineation, sample isolation and microarray analysis. Data visualization and mining tools were developed to create a publicly accessible data resource (http://human.brain-map.org/). Extensive methodological details are supplied in Supplementary Methods 1.
Publication 2012
Adult Autopsy Brain Brain Mapping isolation Microarray Analysis Tissues Transcription, Genetic

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2009
Adult Anger Arousal Asian Americans Europeans Face Fear Females Hair Latinos Males Muscle Tonus Negroid Races Oral Cavity

Most recents protocols related to «Adult»

Example 2

Twenty-eight (28) healthy, adult male and female (non-childbearing potential) subjects were enrolled in the study in total; 14 subjects in each study part (Parts 1 and 2). A minimum of 8 female subjects were enrolled in the study (i.e., a minimum of 4 female subjects per study part). Each subject participated in either Part 1 or Part 2, but not both.

Part 1

On Day 1 of Treatment Period 1, a single oral dose of 20 mg mitapivat sulfate was administered. Serial blood samples for plasma assay of mitapivat concentrations and its CYP3A4 metabolite, referred to herein as the “Metabolite” (structure below),

[Figure (not displayed)]
were collected from predose to 120 hours following administration of mitapivat sulfate. In Treatment Period 2, an oral dose of 200 mg itraconazole was administered once daily (QD) for 9 consecutive days (Day 1 through Day 9 of Treatment Period 2) with a single oral dose of 20 mg mitapivat sulfate coadministered on Day 5. Serial blood samples for plasma assay of mitapivat and the Metabolite concentrations were collected from predose to 120 hours following coadministration of mitapivat sulfate and itraconazole on Day 5.

In Treatment Period 1, mitapivat sulfate was administered orally with approximately 240 mL of water. In Treatment Period 2, on Days 1 to 4, itraconazole was administered alone immediately followed by approximately 220 mL of water, and on Day 5, itraconazole was administered first (no water) and was immediately followed by mitapivat sulfate administration with approximately 220 mL of water. Study drugs (mitapivat sulfate and itraconazole) were administered following an overnight fast of at least 10 hours on Day 1 of Treatment Period 1 (mitapivat sulfate only) and Day 5 of Treatment Period 2 (mitapivat sulfate and itraconazole), and subjects remained fasted for 4 hours after dosing. On all other dosing days, itraconazole was administered following a predose fast of at least 4 hours and subjects remained fasted for at least 2 hours after dosing.

Part 2

On Day 1 of Treatment Period 1, a single oral dose of 50 mg mitapivat sulfate was administered. Serial blood samples for plasma assay of mitapivat and the Metabolite concentrations were collected from predose to 120 hours following administration of mitapivat sulfate. In Treatment Period 2, an oral dose of 600 mg rifampin was administered QD for 12 consecutive days (Day 1 through Day 12 of Treatment Period 2) with a single oral dose of 50 mg mitapivat sulfate coadministered on Day 8. Serial blood samples for plasma assay of mitapivat sulfate and the Metabolite concentrations were collected from predose to 120 hours following coadministration of mitapivat and rifampin on Day 8.

In Part 2, study drugs were administered with approximately 240 mL of water on all dosing days including the coadministration of mitapivat sulfate and rifampin on Day 8 of Treatment Period 2. Mitapivat sulfate and rifampin was administered following an overnight fast of at least 10 hours on Day 1 of Treatment Period 1 (mitapivat sulfate only) and Day 8 of Treatment Period 2 (both mitapivat sulfate and rifampin) and subjects remained fasted for 4 hours after dosing. On all other dosing days, rifampin was administered following a predose fast of at least 4 hours and subjects remained fasted for at least 2 hours after dosing. There was a washout period of 7 days between the mitapivat sulfate dose in Treatment Period 1 and the first itraconazole (Part 1) or rifampin (Part 2) dose in Treatment Period 2. All study drugs were consumed within 5 minutes for both Part 1 and Part 2.

Full text: Click here
Patent 2024
Adult Biological Assay Cytochrome P-450 CYP3A4 Cytochrome P-450 CYP3A4 Inducers Cytochrome P-450 CYP3A4 Inhibitors Drug Interactions Females Itraconazole Males mitapivat mitapivat sulfate Plasma Rifampin

Example 1

The MCA-miner method disclosed herein in FIGS. 2A-2C, when used together with BRL, offers the power of rule list interpretability while maintaining the predictive capabilities of already established machine learning methods.

The performance and computational efficiency of the new MCA-miner is benchmarked against the “Titanic” dataset, as well as the following five (5) datasets available in the UCI Machine Learning Repository: “Adult,” “Autism Screening Adult,” “Breast Cancer Wisconsin (Diagnostic),” “Heart Disease,” and “HIV-1 protease cleavage,” which are designated as Adult, ASD, Cancer, Heart, and HIV, respectively. These datasets represent a wide variety of real-world experiments and observations, thus enabling the improvements described herein to be compared against the original BRL implementation using the FP-Growth miner.

All six benchmark datasets correspond to binary classification tasks. The experiments were conducted using the same set up in each of the benchmarks. First, the dataset is transformed into a format that is compatible with the disclosed BRL implementation. Second, all continuous attributes are quantized into either two (2) or three (3) categories, while keeping the original categories of all other variables. It is worth noting that depending on the dataset and how its data was originally collected, the existing taxonomy and expert domain knowledge are prioritized in some instances to generate the continuous variable quantization. A balanced quantization is generated when no other information was available. Third, a model is trained and tested using 5-fold cross-validations, reporting the average accuracy and Area Under the ROC Curve (AUC) as model performance measurements.

Table 1 presents the empirical result of comparing both implementations. The notation in the table follows the definitions above. To strive for a fair comparison between both implementations, the parameters rmax=2 and smin=0:3 are fixed for both methods, and in particular for MCA-miner μmin=0:5 and M=70 are also set. The multi-core implementations for both the new MCA-miner and BRL were executed on six parallel processes, and stopped when the Gelman & Rubin parameter satisfied {circumflex over (R)}≤1.05. All the experiments were run using a single AWS EC2 c5.18×large instance with 72 cores.

TABLE 1
Performance evaluation of FP-Growth against MCA-miner
when used with BRL on benchmark datasets. ttrain is the full training wall time.
FP-GROWTH + BRLMCA-MINER + BRL
DATASETnpΣt-1p1|ACCURACYAUCttrain[s]ACCURACYAUCttrain[s]
Adult45.222141110.810.855120.810.85115
ASD24821890.870.901980.870.9016
Cancer569321500.920.971680.920.9422
Heart30313490.820.861170.820.8615
HIV5.84081600.870.884490.870.8836
Titanic2.201380.790.761180.790.7510

It is clear from the experiments in Table 1 that the new MCA-miner matches the performance of FP-Growth in each case, while significantly reducing the computation time required to mine rules and train a BRL model.

Full text: Click here
Patent 2024
Adult Autistic Disorder Cytokinesis Diagnosis Figs Heart Heart Diseases HIV-2 Malignant Neoplasm of Breast Malignant Neoplasms p16 protease, Human immunodeficiency virus 1
Not available on PMC !

Example 2

In the following experiments, a mouse model of RVO, which induces reproducible retinal edema was used. RVO is the model that was used for testing anti-VEGF therapies for DME. Brown et al., Ophthalmology 117, 1124-1133 el 121 (2010); and Campochiaro et al., Ophthalmology 117, 1102-1112 e1101 (2010). I n this model, Rose Bengal, a photoactivatable dye, is injected into the tail veins of adult C57B16 mice and photoactivated by laser of retinal veins around the optic nerve head. A clot is formed and edema or increased retinal thickness develops rapidly. Inflammation, also seen in diabetes, also develops.

Fluorescein leakage and maximal retinal edema, measured by fluorescein angiography and optical coherence tomography (OCT), respectively, using the Phoenix Micron IV, is observed 24 h after RVO. Retinal edema is maintained over the first 3 days RVO. By day 4 the edema decreases and the retina subsequently thins out. In addition to edema formation there is evidence of cell death in the photoreceptor cell layer by day 2 after RVO.

In this example, mice were anesthetized with intra-peritoneal (IP) injection of ketamine and xylazine. One drop of 0.5% alcaine was added to the eye as topical anesthetic. The retina was imaged with the Phoenix Micron IV to choose veins for laser ablation using the Phoenix Micron IV image guided laser. One to four veins around the optic nerve head were ablated by delivering a laser pulse (power 50 mW, spot size 50 μm, duration 3 seconds) to each vein.

Full text: Click here
Patent 2024
Adult Alcaine Cell Death Clotrimazole Diabetes Mellitus Edema Fluorescein Fluorescein Angiography Inflammation Injections, Intraperitoneal Ketamine Laser Ablation Mus Neoplasm Metastasis Optic Disk Photoreceptor Cells Pulse Rate Retina Retinal Edema Rose Bengal Tail Tomography, Optical Coherence Topical Anesthetics Vascular Endothelial Growth Factors Veins Veins, Central Retinal Vision Xylazine

Example 2

The antidepressant effects of the yeast Saccharomyces boulardii are evaluated by chronic administration to adult male CD1 mice in the forced swimming test.

The forced-swimming test, well known to the skilled person, is used to measure the antidepressant effects of a pharmacological compound. This test is based on the work of Porsolt et al. (1977) Act. Int. Pharmacodyn. Ther. 229:327-336 and has since been classically used to predict the clinical efficacy of antidepressant compounds.

Briefly, this test takes place in a cylindrical container filled with water (water height 10 cm) at 23° C. The mouse is placed in this container for 6 minutes, and the duration of immobility of the animal is measured for the last 4 minutes.

The antidepressant compounds administered prior to this test significantly reduce the immobility time of the animals.

Full text: Click here
Patent 2024
Adult Animals Antidepressive Agents Males Mice, House Mood Disorders Saccharomyces boulardii Yeast, Dried
Not available on PMC !

Example 14

An adult patient with dietary fructose intolerance presents with one or more of symptoms such as abdominal bloating, flatulence, pain, distension, diarrhea and nausea. Treatment with the preparation of the invention is initiated by the clinician at an effective dose, which mitigates fructose-induced symptoms. Assessment of symptoms and testing are periodically performed. The dose of the treatment is adjusted as required by the clinician in attendance to manage symptoms of the dietary fructose-related condition. The subject may be treated with other drugs concurrently and may or may not be under restricted diet. Treatment with the preparation of the present invention is able to mitigate one or more symptoms related to dietary fructose.

Full text: Click here
Patent 2024
Abdomen Adult Diarrhea Diet Dietary Restriction Flatulence Fructose Intolerances, Fructose Nausea Pain Patients Pharmaceutical Preparations Symptom Assessment

Top products related to «Adult»

Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, China, Germany, Canada, United Kingdom, Japan, France, Italy, Morocco, Hungary, New Caledonia, Montenegro, India
Sprague-Dawley rats are an outbred albino rat strain commonly used in laboratory research. They are characterized by their calm temperament and reliable reproductive performance.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Montenegro, Japan, Canada, United Kingdom, Germany, Macao, Switzerland, China
C57BL/6J mice are a widely used inbred mouse strain. They are a commonly used model organism in biomedical research.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, Germany, Sao Tome and Principe, United Kingdom, Switzerland, Macao, China, Australia, Canada, Japan, Spain, Belgium, France, Italy, New Zealand, Denmark
Tamoxifen is a drug used in the treatment of certain types of cancer, primarily breast cancer. It is a selective estrogen receptor modulator (SERM) that can act as both an agonist and antagonist of the estrogen receptor. Tamoxifen is used to treat and prevent breast cancer in both men and women.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Montenegro, Germany, United Kingdom, Japan, China, Canada, Australia, France, Colombia, Netherlands, Spain
C57BL/6J is a mouse strain commonly used in biomedical research. It is a common inbred mouse strain that has been extensively characterized.

More about "Adult"

Exploring the World of Adults: From Full Physical Maturity to Effective Adult-Focused Research and Products The term 'Adult' refers to a human being who has reached the stage of full physical development and maturity, typically 18 years of age or older, beyond the adolescent phase.
This stage of life is characterized by a range of unique physiological, cognitive, and social characteristics that distinguish adults from younger individuals.
As part of adult-focused research, scientists and researchers often utilize various experimental models and tools to gain insights into adult-specific processes and conditions.
Some commonly employed models and reagents include Sprague-Dawley rats, C57BL/6J mice, TRIzol reagent, FBS (Fetal Bovine Serum), DMEM (Dulbecco's Modified Eagle Medium), and Penicillin/streptomycin.
These models and reagents play a crucial role in understanding adult-relevant biological mechanisms, disease pathways, and the effectiveness of potential therapeutic interventions.
For example, the RNeasy Mini Kit is a widely used tool for isolating and purifying RNA from adult tissue samples, while Tamoxifen is a commonly studied drug that has applications in adult-focused research and treatments.
To enhance the reproducibility and accuracy of adult-focused research, innovative tools like PubCompare.ai have emerged.
This AI-driven protocol comparison platform helps researchers identify the most effective products and procedures from the literature, preprints, and patents, empowering them to make informed decisions and achieve reliable results.
By leveraging the insights gained from the MeSH term description and the Metadescription, researchers can experienxe the power of AI-assisted exploration, leading to advancements in our understanding of adult-specific health, development, and well-being.