Short sequence reads from 23 isolates of five different species, Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Staphylococcus aureus and Vibrio cholerae, were also submitted to ResFinder. All 23 isolates had been sequenced on the Illumina platform using paired-end reads. A ResFinder threshold of ID = 98.00% was selected, as previous tests of ResFinder had shown that a threshold lower than this gives too much noise (e.g. fragments of genes). Phenotypic antimicrobial susceptibility testing was determined as MIC determinations, as previously described.8 (link)With ‘(chromosome and plasmid)(multi-drug or antimicrobial or antibiotic)(resistant or resistance) pathogen’ as search criteria, one isolate from each species with completely sequenced and assembled, and chromosome and plasmid data were collected from the NCBI Genomes database (
Escherichia coli
It is one of the most studdied microorganisms and plays an important role in both medical and biotechnology research.
PubCompare.ai's AI-driven protocol optimization tools can help improve the reproducibility and reliability of E. coli-based experiments, enabling researchers to quickly identify the most effective protocols from scientific literature, preprints, and patents.
Most cited protocols related to «Escherichia coli»
Short sequence reads from 23 isolates of five different species, Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Staphylococcus aureus and Vibrio cholerae, were also submitted to ResFinder. All 23 isolates had been sequenced on the Illumina platform using paired-end reads. A ResFinder threshold of ID = 98.00% was selected, as previous tests of ResFinder had shown that a threshold lower than this gives too much noise (e.g. fragments of genes). Phenotypic antimicrobial susceptibility testing was determined as MIC determinations, as previously described.8 (link)With ‘(chromosome and plasmid)(multi-drug or antimicrobial or antibiotic)(resistant or resistance) pathogen’ as search criteria, one isolate from each species with completely sequenced and assembled, and chromosome and plasmid data were collected from the NCBI Genomes database (
Remaining PCR amplicons were separated based on the presence of aligned nucleotides at E. coli positions of the respective primer binding sites instead of searching for the primer sequences itself. This strategy is robust against sequencing errors within the primer signatures or incomplete primer signatures. This separation strategy works because the amplicon size of one primer pair is significant longer, with overhangs on both 3′ and 5′ site, compared with the amplicon of the second primer pair. With this approach the need for barcoding during combined sequencing of 16S pyrotags derived from different PCR reactions on the same PTP lane was avoided. FASTA files for each primer pair of the separated samples are available online at
Reads of the filtered and separated 16S pyrotag datasets as well as metagenomes were dereplicated, clustered and classified on a sample by sample basis. Dereplication (identification of identical reads ignoring overhangs) was done with cd-hit-est of the cd-hit package 3.1.2 (
E. coli BW25141 (rrnB3 DElacZ4787 DEphoBR580 hsdR514 DE(araBAD)567 DE(rhaBAD)568 galU95 DEendA9::FRT DEuidA3::pir(wt) recA1 rph-1) was used for maintenance of the template plasmid pKD13 (GenBank™ Accession number AY048744). pKD46 (GenBank™ Accession number AY048746; Datsenko and Wanner, 2000 (link)) was made by PCR amplification of the Red recombinase genes from phage λ and cloning into pKD16, a derivative of INT-ts (Haldimann and Wanner, 2001 (link)) carrying araC and araBp from pBAD18 (Guzman et al, 1995 (link)).
The accuracy of PICRUSt across different taxonomic groups in the phylogenetic tree of bacteria and archaea was visualized using GraPhlAn v0.9 (
We expected that the accuracy of PICRUSt’s predictions would decrease when large phylogenetic distances separated the organism of interest and the nearest sequenced reference genome(s). To test this expectation, ‘distance holdout’ datasets were constructed. These datasets were constructed in the same manner as ‘genome holdout’ datasets described above, except that all genomes within a particular phylogenetic distance (on the 16S tree) of the test organism were excluded from the reference dataset. For example, when predicting Escherichia coli MG1655, a distance holdout of 0.03 substitutions/site would exclude not only that genome, but also all other E. coli strains. These tests were conducted at phylogenetic distances ranging from 0.0 to 0.50 substitutions/site in the full-length 16S rRNA gene, in increments of 0.03 substitutions/site.
Finally, we tested the effects of local inaccuracy in tree construction on PICRUSt’s performance. These ‘tree randomization holdouts’ were constructed the same as the ‘genome holdout’ dataset (above), except that in addition to excluding one genome, the labels of all organisms within a specified phylogenetic distance of the test organism were randomized on the 16S tree. For example, our ‘tree randomization holdout’ targeting E.coli with a distance of 0.03 scrambled the phylogeny of all reference E.coli strains around the tip to be predicted, while leaving the rest of the tree intact. These tests were conducted at phylogenetic distances ranging from 0.0 to 0.50 substitutions/site in the 16S rRNA gene, in increments of 0.03 substitutions/site.
For single-site mutation, deletion or insertion, the PCR reaction of 50 μl contained 2–10 ng of template, 1 μM primer pair, 200 μM dNTPs and 3 units of Pfu DNA polymerase. The PCR cycles were initiated at 95°C for 5 minutes to denature the template DNA, followed by 12 amplification cycles. Each amplification cycle consisted of 95°C for 1 minute, Tm no -5°C for 1 minute and 72°C for 10 minutes or 15 minutes according to the length of the template constructs (about 500 bp per minute for Pfu DNA polymerase). The PCR cycles were finished with an annealing step at Tm pp-5 for 1 minute and an extension step at 72°C for 30 minutes. The PCR products were treated with 5 units of DpnI at 37°C for 2 hours and then 10 μl of each PCR reactions was analyzed by agarose gel electrophoresis. The full-length plasmid DNA was quantified by band density analysis against the 1636-bp band (equal to 10% of the mass applied to the gel) of the DNA ladders. An aliquot of 2 μl above PCR products, the PCR products generated using QuickChange™ or generated as described in [13 (link)] was transformed respectively into E. coli DH5α competent cells by heat shock. The transformed cells were spread on a Luria-Bertani (LB) plate containing antibiotics and incubated at 37°C over night. The number of colonies was counted and used as an indirect indication of PCR amplification efficiency. Four colonies from each plate were grown and the plasmid DNA was isolated. To verify the mutations, 500 ng of plasmid DNA was mixed with 50 pmole of T7 sequencing primer in a volume of 15 μl. DNA sequencing was carried out using the Sequencing Service, University of Dundee. For multiple site-directed mutations, deletions and insertions, the PCR was carried out in 50 μl of reaction containing 10 ng of template, 1 μM of each of the two primer pairs, 200 μM dNTPs and 3 units of Pfu DNA polymerase. The PCR cycles, DNA quantification, transformation and mutation verification were essentially the same as described above.
Most recents protocols related to «Escherichia coli»
Example 6
TbpB and NMB0313 genes were amplified from the genome of Neisseria meningitidis serotype B strain B16B6. The LbpB gene was amplified from Neisseria meningitidis serotype B strain MC58. Full length TbpB was inserted into Multiple Cloning Site 2 of pETDuet using restriction free cloning ((F van den Ent, J. Löwe, Journal of Biochemical and Biophysical Methods (Jan. 1, 2006)).). NMB0313 was inserted into pET26, where the native signal peptide was replaced by that of pelB. Mutations and truncations were performed on these vectors using site directed mutagenesis and restriction free cloning, respectively. Pairs of vectors were transformed into E. coli C43 and were grown overnight in LB agar plates supplemented with kanamycin (50 μg/mL) and ampicillin (100 μg/mL).
tbpB genes were amplified from the genomes of M. catarrhalis strain 035E and H. influenzae strain 86-028NP and cloned into the pET52b plasmid by restriction free cloning as above. The corresponding SLAMs (M. catarrhalis SLAM 1, H. influenzae SLAM1) were inserted into pET26b also using restriction free cloning. A 6His-tag was inserted between the pelB and the mature SLAM sequences as above. Vectors were transformed into E. coli C43 as above.
Cells were harvested by centrifugation at 4000 g and were twice washed with 1 mL PBS to remove any remaining growth media. Cells were then incubated with either 0.05-0.1 mg/mL biotinylated human transferrin (Sigma-aldrich T3915-5 MG), α-TbpB (1:200 dilution from rabbit serum for M. catarrhalis and H. influenzae; 1:10000 dilution from rabbit serum for N. meningitidis), or α-LbpB (1:10000 dilution from rabbit serum-obtained a gift from J. Lemieux) or α-fHbp (1:5000 dilution from mouse, a gift from D. Granoff) for 1.5 hours at 4° C., followed by two washes with 1 mL of PBS. The cells were then incubated with R-Phycoerythrin-conjugated Streptavidin (0.5 mg/ml Cedarlane) or R-phycoerythrin conjugated Anti-rabbit IgG (Stock 0.5 mg/ml Rockland) at 25 ug/mL for 1.5 hours at 4° C. The cells were then washed with 1 mL PBS and resuspended in 200 uL fixing solution (PBS+2% formaldehyde) and left for 20 minutes. Finally, cells were washed with 2×1 mL PBS and transferred to 5 mL polystyrene FACS tubes. The PE fluorescence of each sample was measured for PE fluorescence using a Becton Dickinson FACSCalibur. The results were analyzed using FLOWJO software and were presented as mean fluorescence intensity (MFI) for each sample. For N. meningtidis experiments, all samples were compared to wildtype strains by normalizing wildtype fluorescent signals to 100%. Errors bars represent the standard error of the mean (SEM) across three experiments. Results were plotted statistically analysed using GraphPad Prism 5 software. The results shown in
Example 8
In selecting genomes for a given bacterial species where a SLAM homolog was identified, preference was given to reference genomes that contained fully sequenced genomes. SLAM homologs were identified using iterative Blast searches into closely related species to Neisseria to more distantly related species. For each of the SLAM homologs identified in these species, the corresponding genomic record (NCBI genome) was used to identify genes upstream and downstream along with their corresponding functional annotations (NCBI protein database, Ensembl bacteria). In a few cases, no genes were predicted upstream or downstream of the SLAM gene as they were too close to the beginning or end of the contig, respectively, and thus these sequences were ignored.
Neighbouring genes were analyzed for 1) an N-terminal lipobox motif (predicted using LipoP, SignalP), and 2) a solute binding protein, Tbp-like (InterPro signature: IPR or IPR011250), or pagP-beta barrel (InterPro signature: IPR011250) fold. If they contained these elements, we identified the adjacent genes as potential SLAM-dependent surface lipoproteins.
A putative SLAM (PM1515, SEQ ID NO: 1087) was identified in Pasteurella multocida using the Neisseria SLAM as a search. The putative SLAM (PM1515, SEQ ID NO: 1087) was adjacent to a newly predicted lipoprotein gene with unknown function (PM1514, SEQ ID NO: 1083) (
The putative SLAM (PM1515, SEQ ID NO: 1087) and its adjacent lipoprotein (PM1514, SEQ ID NO: 1083) were cloned into pET26b and pET52b, respectively, as previously described and transformed into E. coli C43 and grown overnight on LB agar supplemented with kanamycin (50 ug/ml) and ampicillin (100 ug/ml).
Cells were grown in auto-induction media for 18 hours at 37 C and then harvested, washed twice in PBS containing 1 mM MgCl2, and labeled with α-Flag (1:200, Sigma) for 1 hr at 4 C. The cells were then washed twice with PBS containing 1 mM MgCl2 and then labeled with R-PE conjugated α-mouse IgG (25 ug/mL, Thermo Fisher Scientific) for 1 hr at 4 C. following straining, cells were fixed in 2% formaldehyde for 20 minutes and further washed with PBS containing 1 mM MgCl2. Flow Cytometry was performed with a Becton Dickinson FACSCalibur and the results were analyzed using FLOWJO software. Mean fluorescence intensity (MFI) was calculated using at least three replicates was used to compare surface exposure the lipoprotein in strains either containing or lacking the putative SLAM (PM1515) and are shown in
Example 6
The organ bath system represents an ex vivo system lacking central nervous system (CNS) connections. Gastrointestinal motility is investigated using mice as an animal model. Experiments are performed to measure colonic contractility in conscious germ free (GF) and colonized mice with infusion of tryptamine by enema as well as following colonization of GF with tryptamine producing E. coli. The effect of tryptamine on epithelial biology also is determined.
Example 2
Expressed and purified dihydropteroate synthase (DHPS) from S. aureus (saDHPS) was cloned. DHPS is the enzyme that installs PABA (p-aminobenzoic acid) in the folate biosynthesis pathway (Scheme 2). It has been demonstrated that the PABA analog PAS (2-aminosalicylate) is incorporated into folic acid in M. tuberculosis (Chakraborty, S. et al. 2013), suggesting that PAS is a substrate for DHPS. Using a coupled assay, it was determined that the kinetic parameters for saDHPS with PABA, PAS and F-PABA. Importantly, all three compounds have similar kcat and Km values indicating that F-PABA is an alternative substrate for saDHPS. Since PAS is an antibacterial compound whose mechanism of action may be related for the ability of this compound to compete with PABA for DHPS, we determined the antibacterial activity and cytotoxicity of F-PABA for several bacterial species as well as Vero cells. In each case no growth inhibition was observed up to 200 μg/ml. Unlike PAA, 2-F-PABA has no antibacterial activity (Table 1).
Example 3
Effectiveness of Newly Evolved TpH Background Strain Using Schistosoma mansoni TpH
One of the 7 evolved high 5HTP-producers was selected to further evaluate if the mutations identified were only specifically beneficial to hsTpH2 or could be widely applicable to others. The chosen evolved strain was first cured to lose the evolution plasmid (e.g. the hsTpH gene) and this was immediately followed by re-introducing the E. coli tyrA gene. Upon restoration of the strain's tyrosine auxotrophy, the resulting strain was transformed with pHM2, which is identical to pHM1 used in the earlier evolution study except that the hsTpH gene was replaced with a Schistosoma mansoni TpH gene (SEQ ID NO:9). The 5HTP production of the resulting strain was compared to a wild-type strain carrying pHM2 in the presence of 100 mg/l tryptophan. Results showed the wild-type transformants could only produce ˜0.05 mg/l 5HTP while the newly evolved background strain transformants accumulated >20 mg/l. These production results demonstrated that the mutations acquired in the evolved background strain were not only beneficial to hsTpH but also to other TpHs; possibly applicable also to other aromatic amino acid hydroxylases (e.g. tyrosine hydroxylase).
Top products related to «Escherichia coli»
More about "Escherichia coli"
It is one of the most extensively studied microorganisms and plays a crucial role in both medical and biotechnology research.
E. coli is a versatile organism that can be leveraged for a wide range of applications, from bioremediation to the production of valuable compounds.
Researchers often utilize E. coli as a model organism to study fundamental biological processes, such as gene expression, protein folding, and cellular metabolism.
One of the key advantages of using E. coli in research is its rapid growth rate and well-characterized genetics.
This makes it an ideal host for cloning and expressing recombinant proteins, such as those derived from the T4 DNA ligase enzyme or the Glutathione Sepharose 4B affinity resin.
To ensure the reliability and reproducibility of E. coli-based experiments, researchers may employ various techniques and tools, including the QIAprep Spin Miniprep Kit for plasmid DNA purification, the PGEM-T Easy vector for cloning, and the Ni-NTA agarose resin for protein purification.
Additionally, the use of antibiotics like ampicillin can help maintain selective pressure and ensure the stability of desired genetic elements within the E. coli cells.
Beyond the laboratory, E. coli is also a significant player in the field of biotechnology.
The bacterium's ability to produce large quantities of proteins, enzymes, and other valuable compounds has made it a workhorse in the production of biofuels, pharmaceuticals, and industrial chemicals.
However, it is important to note that some strains of E. coli, such as those that produce Shiga toxin (referred to as Shiga toxin-producing E. coli or STEC), can pose a serious threat to human health.
Proper safety protocols and containment measures are essential when working with these pathogenic strains.
Overall, the study of E. coli continues to be a crucial area of research, with ongoing advancements in our understanding of its biology and potential applications.
By leveraging the power of PubCompare.ai's AI-driven protocol optimization tools, researchers can streamline their E. coli-based experiments, enhance the reproducibility and reliability of their findings, and contribute to the advancement of this dynamic field of study.