For single-site mutation, deletion or insertion, the PCR reaction of 50 μl contained 2–10 ng of template, 1 μM primer pair, 200 μM dNTPs and 3 units of Pfu DNA polymerase. The PCR cycles were initiated at 95°C for 5 minutes to denature the template DNA, followed by 12 amplification cycles. Each amplification cycle consisted of 95°C for 1 minute, Tm no -5°C for 1 minute and 72°C for 10 minutes or 15 minutes according to the length of the template constructs (about 500 bp per minute for Pfu DNA polymerase). The PCR cycles were finished with an annealing step at Tm pp-5 for 1 minute and an extension step at 72°C for 30 minutes. The PCR products were treated with 5 units of DpnI at 37°C for 2 hours and then 10 μl of each PCR reactions was analyzed by agarose gel electrophoresis. The full-length plasmid DNA was quantified by band density analysis against the 1636-bp band (equal to 10% of the mass applied to the gel) of the DNA ladders. An aliquot of 2 μl above PCR products, the PCR products generated using QuickChange™ or generated as described in [13 (link)] was transformed respectively into E. coli DH5α competent cells by heat shock. The transformed cells were spread on a Luria-Bertani (LB) plate containing antibiotics and incubated at 37°C over night. The number of colonies was counted and used as an indirect indication of PCR amplification efficiency. Four colonies from each plate were grown and the plasmid DNA was isolated. To verify the mutations, 500 ng of plasmid DNA was mixed with 50 pmole of T7 sequencing primer in a volume of 15 μl. DNA sequencing was carried out using the Sequencing Service, University of Dundee. For multiple site-directed mutations, deletions and insertions, the PCR was carried out in 50 μl of reaction containing 10 ng of template, 1 μM of each of the two primer pairs, 200 μM dNTPs and 3 units of Pfu DNA polymerase. The PCR cycles, DNA quantification, transformation and mutation verification were essentially the same as described above.
Pseudomonas aeruginosa
It is a leading cause of nosocomial infections, particularly in immunocompromised individuals and those with cystic fibrosis.
P. aeruginosa can cause a wide range of diseases, including pneumonia, urinary tract infections, sepsis, and skin and soft tissue infections.
Its ability to form biofilms and adapt to diverse environments contributes to its persistence and virulence.
Researchers use P. aeruginosa as a model organism to study bacterial pathogenesis, quorum sensing, and the development of novel antimicrobial therapies.
Optimizing research protocols for this important pathogen is crucial for reproducibility and advancing our understanding of its biology and clinical implications.
Most cited protocols related to «Pseudomonas aeruginosa»
For single-site mutation, deletion or insertion, the PCR reaction of 50 μl contained 2–10 ng of template, 1 μM primer pair, 200 μM dNTPs and 3 units of Pfu DNA polymerase. The PCR cycles were initiated at 95°C for 5 minutes to denature the template DNA, followed by 12 amplification cycles. Each amplification cycle consisted of 95°C for 1 minute, Tm no -5°C for 1 minute and 72°C for 10 minutes or 15 minutes according to the length of the template constructs (about 500 bp per minute for Pfu DNA polymerase). The PCR cycles were finished with an annealing step at Tm pp-5 for 1 minute and an extension step at 72°C for 30 minutes. The PCR products were treated with 5 units of DpnI at 37°C for 2 hours and then 10 μl of each PCR reactions was analyzed by agarose gel electrophoresis. The full-length plasmid DNA was quantified by band density analysis against the 1636-bp band (equal to 10% of the mass applied to the gel) of the DNA ladders. An aliquot of 2 μl above PCR products, the PCR products generated using QuickChange™ or generated as described in [13 (link)] was transformed respectively into E. coli DH5α competent cells by heat shock. The transformed cells were spread on a Luria-Bertani (LB) plate containing antibiotics and incubated at 37°C over night. The number of colonies was counted and used as an indirect indication of PCR amplification efficiency. Four colonies from each plate were grown and the plasmid DNA was isolated. To verify the mutations, 500 ng of plasmid DNA was mixed with 50 pmole of T7 sequencing primer in a volume of 15 μl. DNA sequencing was carried out using the Sequencing Service, University of Dundee. For multiple site-directed mutations, deletions and insertions, the PCR was carried out in 50 μl of reaction containing 10 ng of template, 1 μM of each of the two primer pairs, 200 μM dNTPs and 3 units of Pfu DNA polymerase. The PCR cycles, DNA quantification, transformation and mutation verification were essentially the same as described above.
VirSorter was then compared with the same prophage detection tools on the set of simulated SAGs. In that case, a viral sequence was considered as detected if predicted as completely viral or as a prophage. All the additional detections were manually checked to verify if the region was indeed viral (originating from a prophage in one of the microbial genomes rather than from a viral genome) or a false positive. The same approach was used for the simulated microbial and viral metagenomes results.
For each set of predictions, two metrics are computed. First, the Recall value corresponds to the number of viral sequences correctly predicted divided by the total number of known viral sequences in the dataset, and reflects the ability of the tool to find every known viral sequence in the dataset. Second, the Precision value is computed as the total number of viral sequences correctly predicted divided by the total number of viral sequences predicted, and indicates how accurate the tool is in its identification of viral signal.
The pathogenicity information for the retrieved organisms were taken from NCBI genome project pages as described in Andreatta et al. [31] (link), and for 885 of the 1,224 downloaded organisms, we were able to find pathogenicity information. The final complete training-set (
From January 2012, NCBI removed pathogenicity information from its pages, redirecting the users to Genomes Online Database (GOLD) [58] (link). On 26th Feb. 2012 we queried GOLD for pathogenicity information about organisms that had been published after 5th Nov. 2010 (the date of the latest published bacteria in the training-set). We were able to extract pathogenicity information for 449 organisms, and subsequently retrieved the corresponding complete genomes and plasmids from NCBI based on the NCBI project ids.
The final test data (
Most recents protocols related to «Pseudomonas aeruginosa»
Example 2
PAO1, the parent strain of PGN5, is a wild-type P. aeruginosa strain that produces relatively small amounts of alginate and exhibits a non-mucoid phenotype; thus, PGN5 is also non-mucoid when cultured (
To examine whether the alginate produced by PGN5+mucE was similar in composition to alginate produced by VE2, HPLC was performed to compare the M and G content of alginate produced by each strain. The chromatograms obtained from alginate prepared from VE2 and PGN5+mucE were identical (
Example 1
Lys68 is a globular endolysin, i.e. does not exhibit an apparent domain structure with an enzymatic domain and a cell wall binding domain, as encountered for various other endolysins. The inventor hypothesized, that Lys68 endolysin may nonetheless exhibit a core region responsible for enzymatic activity and tested this hypothesis with truncated versions of Lys68, namely Lys68(1-132) (SEQ ID NO:32), Lys68(1-148) (SEQ ID NO:33) and Lys68(7-162) (SEQ ID NO:34).
Briefly, the following experiment was carried out: Exponentially growing P. aeruginosa cells were harvested by centrifugation and subsequently resuspended in 0.05 M Tris/HCl pH 7.7 buffer saturated with chloroform. This cell suspension was incubated for 45 minutes at room temperature. Afterwards, cells were washed with 20 mM HEPES pH 7.4 and finally adjusted to an OD600 of ca. 1.5 with 20 mM HEPES pH 7.4. In order to test the muralytic activity, 270 μl of chloroform treated cells were mixed with 30 μl of purified variants of Lys68 in a 96 well plate and the OD600 was monitored in a microplate reader.
The result is shown in
Example 1
To generate an attenuated strain of P. aeruginosa for production of alginate, the following virulence factor genes were sequentially deleted from the chromosome of the wild-type strain PAO1: toxA, plcH, phzM, wapR, and aroA. toxA encodes the secreted toxin Exotoxin A, which inhibits protein synthesis in the host by deactivating elongation factor 2 (EF-2). plcH encodes the secreted toxin hemolytic phospholipase C, which acts as a surfactant and damages host cell membranes. phzM encodes phenazine-specific methyltransferase, an enzyme required for the production of the redox active, pro-inflammatory, blue-green secreted pigment, pyocyanin. wapR encodes a rhamnosyltransferase involved in synthesizing O-antigen, a component of lipopolysaccharide (LPS) of the outer membrane of the organism. aroA encodes 3-phosphoshikimate 1-carboxyvinyltransferase, which is required intracellularly for aromatic amino acid synthesis. Deletion of aroA from the P. aeruginosa genome has previously been shown to attenuate the pathogen. Each gene was successfully deleted using a homologous recombination strategy with the pEX100T-Not1 plasmid. The in-frame, marker-less deletion of these five gene sequences was verified by Sanger sequencing and by whole genome resequencing (
To verify gene deletion and attenuation of the PGN5 strain, the presence of the products of the deleted genes was measured and was either undetectable, or significantly reduced in the PGN5 strain. To test for the toxA gene deletion in PGN5, a Western blot analysis was performed for the presence of Exotoxin A in the culture medium. Exotoxin A secretion was detected in wild-type PAO1 control, but not in the PGN5 strain (
Example 3
To test whether the pathogenesis of PGN5 was attenuated, C57BL/6 mice were challenged with intraperitoneal injection of 5×108 cells of the PCR- and phenotype-validated strains VE2, PGN5+mucE, or E. coli BL21, or PBS as a negative control. Injection with the VE2 strain was fatal in 95% of mice within 48 h (
Top products related to «Pseudomonas aeruginosa»
More about "Pseudomonas aeruginosa"
It is a leading cause of nosocomial (hospital-acquired) infections, particularly in immunocompromised individuals and those with cystic fibrosis.
P. aeruginosa can cause a wide range of diseases, including pneumonia, urinary tract infections, sepsis, and skin and soft tissue infections.
This versatile pathogen is able to adapt to diverse environments and form biofilms, which contribute to its persistence and virulence.
Researchers often use P. aeruginosa as a model organism to study bacterial pathogenesis, quorum sensing (a communication system used by bacteria), and the development of novel antimicrobial therapies.
In addition to P. aeruginosa, other important pathogens include Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Candida albicans, and Bacillus subtilis.
These microorganisms can also cause serious infections and are commonly studied in the laboratory.
The Vitek 2 system is a widely used automated platform for the identification and antimicrobial susceptibility testing of these and other clinically relevant bacteria and fungi.
Optimizing research protocols for P. aeruginosa and other key pathogens is crucial for reproducibility and advancing our understanding of their biology and clinical implications.
PubCompare.ai is a tool that can help researchers locate and compare protocols from the literature, preprints, and patents, using AI-driven analysis to identify the best approaches for their Pseudmonas aeruginosa and other microbial studies.