Culex
These mosquitoes are primarily found in tropical and temperate regions around the world.
Culex mosquitoes are vectors for numerous pathogens, including the causative agents of filariasis, Japanese encephalitis, West Nile virus, and other arboviral infections.
Resarchers studying Culex mosquitoes can leverage PubCompare.ai's AI-driven platform to optimize their research protocols, easily locate relevant literature, and identify the best protocols and produtcs to enhance reproducibility and efficiency.
Most cited protocols related to «Culex»
A recently-initiated Urban Malaria Control Programme (UMCP) in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly paid community members, known as Community-Owned Resource Persons (CORPs) in a decentralized manner [29 (link)]. However, baseline evaluation revealed that at the early stage of the UMCP the levels of coverage achieved by the CORPs were insufficient to enable effective suppression of malaria transmission through larval control, and that training, support and supervision of the CORPs was poor [24 (link)]. The authors concluded that novel surveillance systems were required to enable community-based integrated vector management [24 (link)].
Early experience also indicated that control of culicine species, responsible for the bulk of biting nuisance [30 (link)-32 (link)], would be essential to achieve community acceptance and support for the programme. It was therefore decided to prioritize intensive control of malaria vector species in habitats which are open to sunlight (referred to as "open habitats") but to also implement less intensive control of sanitation structures, such as pit latrines, soakage pits, and container type habitats which are closed to the sun (referred to as "closed habitats") and produce huge numbers of Culex and Aedes, but no Anopheles [33 (link),34 (link)]. Thus, the bulk of the programme description below prioritizes and focuses on the system for controlling open habitats suitable for Anopheles, with a brief section describing mosquito control in closed habitats, for which no detailed routine larval surveillance was undertaken.
The extracted DNA was analyzed by a newly designed multiplex real-time PCR using the primers for Culex pipiens F (
The following bacteria genome sequence files were curated from the BacMap database of University of Alberta [27 ]: Staphylococcus aureus COL; Staphylococcus aureus MRSA252; Staphylococcus aureus MSSA476, Staphylococcus aureus Mu50; Staphylococcus aureus MW2; Staphylococcus aureus N315; Staphylococcus aureus subsp. aureus NCTC 8325; Staphylococcus aureus RF122; Staphylococcus aureus subsp. aureus USA300; Staphylococcus epidermidis ATCC 12228; Staphylococcus epidermidis RP62; Staphylococcus haemolyticus JCSC1435; Escherichia coli 536; Escherichia coli APEC O1; Escherichia coli CFT073; Escherichia coli O157:H7 EDL933; Escherichia coli K12 MG1655; Escherichia coli W3110; Escherichia coli O157:H7 Sakai; Klebsiella pneumoniae MGH 78578; Salmonella enterica Choleraesuis SC-B67; Salmonella enterica Paratypi A ATCC 9150; Salmonella typhimurium LT2; Salmonella enterica CT18; Salmonella enterica Ty2; Shigella boydii Sb227; Shigella dysenteriae Sd197; Shigella flexneri 2a 2457T; and Shigella flexneri 301. The genome sequence files for Staphylococcus aureus subsp. aureus JH1, Staphylococcus aureus subsp. aureus JH9, Staphylococcus aureus Mu3, and Staphylococcus aureus subsp. aureus str. Newman were curated from the European Bioinformatics Institute of the European Molecular Biology Laboratory [28 ]. The genome sequence file for Escherichia coli UT189 was taken from Enteropathogen Resource Integration Center [29 ], and genome sequence data for Salmonella bongori was downloaded from the Sanger Institute Sequencing Centre [30 (link)].
The mosquito genome sequence files for Aedes aegypti, Anopheles gambiae and Culex pipiens were curated from the VectorBase database [31].
Most recents protocols related to «Culex»
Example 13
Solution 1 (2% of perillaldehyde), Solution 2 (0.008 μg/mosquito of dinotefuran), and Solution 3 (0.008 μg/mosquito of dinotefuran with 2% of perillaldehyde) were tested for efficacy against 3- to 5-day old adult Culex quinquefasciatus. At 1 hour we obtained 33%, 10%, and 100% knockdown for Solutions 1, 2, and 3, respectively. At 24 hours we obtained 13%, 77%, and 100% mortality for Solutions 1, 2, and 3, respectively. The CO2 control and acetone standard both had 0% knockdown at 1 hour, and 0% mortality at 24 hours. Results are shown in Table 5.
Example 3
Perilla leaf oil at concentrations of 1%, 5%, and 10% was tested for efficacy against 1- to 2-day old adult Culex quinquefasciatus. At 1 hour we obtained 17%, 100%, and 100% knockdown, respectively. At 24 hours we obtained 10%, 100%, and 100% mortality, respectively. The CO2 control had 0% knockdown at 1 hour, and 0% mortality at 24 hours. The acetone standard had 17% knockdown at 1 hour, and 20% mean mortality at 24 hours. These data suggest that perilla leaf oil exposure by contact leads to Culex quinquefasciatus mortality.
Example 2
Perilla leaf oil was tested for efficacy against 3- to 5-day old adult Aedes aegypti. Solutions tested included Perilla oil at 1%, 2%, 4%, 6%, 8%, and 10%. At 1 hour we obtained 0%, 37%, 97%, 93%, 100%, and 100% knockdown, respectively. At 24 hours we obtained 0%, 20%, 83%, 93%, 100%, and 100% mortality, respectively. The CO2 control and acetone standard both had 0% knockdown at 1 hour, and 0% mortality at 24 hours. These data suggest that perilla leaf oil exposure by contact leads to Aedes aegypti mortality.
Example 14
In support of example 2, Solution 1 (0.008 μg/mosquito of dinotefuran) and Solution 2 (0.008 μg/mosquito of dinotefuran with 2% of perillaldehyde) were tested for efficacy against 3- to 5-day old adult Culex quinquefasciatus. At 1 hour we obtained 10% and 90% knockdown for Solution 1 and 2, respectively. At 24 hours we obtained 73% and 90% mortality for Solution 1 and 2, respectively. The CO2 control and acetone standard both had 0% knockdown at 1 hour, and 0% mortality at 24 hours.
Example 28
We tested pyrethrin+perillaldehyde for efficacy against 3- to 5-day old adult Culex quinquefasciatus. For the concentration, 2% of perillaldehyde, and 0.001 μg/mosquito of pyrethrin, and 0.001 μg/mosquito of pyrethrin with 2% of perillaldehyde, at 1 hour we obtained 33%, 10%, and 80% knockdown respectively. At 24 hours we obtained 13%, 7%, and 33% mean mortality respectively. The CO2 control and acetone standard both had 0% knockdown at 1 hour, and 0% mean mortality at 24 hours. Results are shown in Table 18.
Example 15
In support of examples 2 and 3, Solution 1 (0.008 μg/mosquito of dinotefuran with 3% of perillaldehyde) was tested for efficacy against 4- to 6-day old adult Culex quinquefasciatus. At 1 hour we obtained 100% knockdown; and at 24 hours we obtained 100% mortality. The CO2 control and acetone standard both had 0% knockdown at 1 hour, and 0% mortality at 24 hours.
Top products related to «Culex»
More about "Culex"
These mosquitoes are notorious vectors for transmitting various pathogens to humans and animals, including the causative agents of filariasis, Japanese encephalitis, West Nile virus, and other arboviral infections.
Researchers studying Culex mosquitoes often utilize specialized tools and techniques to optimize their research protocols and enhance reproducibility.
The QIAamp Viral RNA Mini Kit, for example, is a commonly used method for extracting high-quality viral RNA from Culex samples.
RNAlater, a RNA stabilization reagent, can help preserve RNA integrity during sample collection and storage.
Schneider's Drosophila medium is a popular cell culture medium used for maintaining Culex-derived cell lines, such as the BHK-21 cell line.
For DNA-based analyses, the DNeasy Blood & Tissue Kit is a reliable tool for extracting genomic DNA from Culex mosquitoes.
Microscopic examinations of Culex specimens are often carried out using specialized equipment like the SZ stereomicroscope or the M165 FC stereomicroscope.
The CRL-1660 cell line, derived from Culex quinquefasciatus mosquitoes, is a valuable resource for in vitro studies.
To quantify nucleic acid yields and assess purity, researchers may utilize instruments like the NanoDrop 2000 spectrophotometer.
The RNeasy kit is another popular option for isolating high-quality RNA from Culex samples.
By leveraging the AI-driven platform of PubCompare.ai, researchers studying Culex mosquitoes can optimize their research protocols, easily locate relevant literature, and identify the best products and procedures to enhance the reproducibility and efficiency of their work.
This comprehensive approach can contribute to a deeper understanding of these medically important vectors and the diseases they transmit.