Digital photoquadrats were obtained from projects monitoring coral reef community structure in the outer and fringing reefs of Moorea (French Polynesia), Kingman, Palmyra, Tabuaeran and Kiritimati atolls (northern Line Islands), Nanwan Bay (Taiwan), and the platform reefs at Heron Reef (Great Barrier Reef, Australia). These study locations were selected because they offered legacy data involving large numbers of images that had been annotated with equivalent random point methodologies by experts with extensive experience in identifying benthic organisms from photographs at their respective locations. In each location, multiple species of scleractinian corals, macroalgae, crustose coralline algae, and various non-coral invertebrates densely populate benthic surfaces, and photoquadrats are characterized by complex shapes, diverse surface textures, and intricate boundaries between dissimilar taxa. Additionally, water turbidity and light attenuation degrade colors and image clarity to varying degrees for the four image sets, presenting a challenging task for both manual and automated annotation. It should be noted however, that these are all typical conditions, and these image sets represent typical survey images taken for purposes of coral reef ecology.
The four locations also represent the great variation commonly found within and among photographic surveys of shallow (< 20 m depth), Pacific coral reefs. This variation includes differences among locations in species diversity and their colony morphologies, variation in camera equipment (e.g., angle of view, and resolution), distance between camera and benthos (and whether the distance was constant among photographs), and the mechanism employed to compensate for the depth-dependent attenuation of sunlight (i.e., through the use of strobes and/or manual white balance adjustment of camera exposures). The photographs from Moorea, the Line Islands and Nanwan Bay were recorded using framers to hold the camera perpendicular to, and at a constant distance from, the sea floor. Underwater strobes were used in Moorea to restore surface color and remove shadows from images, and in the Line Islands, image-colors were adjusted through manual adjustment of the white balance for each series of images. Neither strobes nor color correction were used to record photoquadrats in Nanwan Bay. Finally, at Heron Island, the reef was recorded using a camera (without strobes or white balance correction) that was hand-held above the reef using a weighted line suspended below the camera to maintain an approximately fixed distance to the sea floor [27 ]. Refer toFig 1 , and S1 Fig for sample images from the locations, to Table 1 for a data summary, and to S1 Appendix for additional details on the survey locations.
The four locations also represent the great variation commonly found within and among photographic surveys of shallow (< 20 m depth), Pacific coral reefs. This variation includes differences among locations in species diversity and their colony morphologies, variation in camera equipment (e.g., angle of view, and resolution), distance between camera and benthos (and whether the distance was constant among photographs), and the mechanism employed to compensate for the depth-dependent attenuation of sunlight (i.e., through the use of strobes and/or manual white balance adjustment of camera exposures). The photographs from Moorea, the Line Islands and Nanwan Bay were recorded using framers to hold the camera perpendicular to, and at a constant distance from, the sea floor. Underwater strobes were used in Moorea to restore surface color and remove shadows from images, and in the Line Islands, image-colors were adjusted through manual adjustment of the white balance for each series of images. Neither strobes nor color correction were used to record photoquadrats in Nanwan Bay. Finally, at Heron Island, the reef was recorded using a camera (without strobes or white balance correction) that was hand-held above the reef using a weighted line suspended below the camera to maintain an approximately fixed distance to the sea floor [27 ]. Refer to
Full text: Click here