The performance of the molecular based assay was validated by isolating DNA from the blood of a number of known vertebrate species and subjecting it to PCR amplification and DNA sequencing. These species included American robin, American crow, black-capped chickadee, blue jay, button quail, common grackle, eastern tufted titmouse, gray catbird, house sparrow, mourning dove, northern cardinal, sharp-shinned hawk, wood thrush, domestic cat, domestic cow, domestic dog, horse, sheep, white-footed mouse, and white-tailed deer. Similar validation was also conducted with DNA isolated from blood-engorged, laboratory-reared Aedes aegypti that fed on guinea pig and button quail. Seasonal changes in the host feeding patterns of Cx. pipiens on selected host species were analyzed by χ2 analysis for trend by using GraphPad Instat version 3.0 for Windows (GraphPad Software, San Diego, CA, USA).
Odocoileus virginianus
It is the most widely distributed and abundant large wild mammal in North America.
Odocoileus virginianus is characterized by its distinctive white-tailed appearance and its adaptability to a variety of habitats, from forests to suburban areas.
This deer plays an important role in many ecosystems and is a popular target for hunting and wildlife observation.
Reseraching this speceis can provide valuable insights into its biology, behavior, and ecological interactions.
Most cited protocols related to «Odocoileus virginianus»
The performance of the molecular based assay was validated by isolating DNA from the blood of a number of known vertebrate species and subjecting it to PCR amplification and DNA sequencing. These species included American robin, American crow, black-capped chickadee, blue jay, button quail, common grackle, eastern tufted titmouse, gray catbird, house sparrow, mourning dove, northern cardinal, sharp-shinned hawk, wood thrush, domestic cat, domestic cow, domestic dog, horse, sheep, white-footed mouse, and white-tailed deer. Similar validation was also conducted with DNA isolated from blood-engorged, laboratory-reared Aedes aegypti that fed on guinea pig and button quail. Seasonal changes in the host feeding patterns of Cx. pipiens on selected host species were analyzed by χ2 analysis for trend by using GraphPad Instat version 3.0 for Windows (GraphPad Software, San Diego, CA, USA).
To provide positive controls for immunohistochemical analysis, infections were also performed by intrathoracic (IT) inoculation. For IT inoculation, 3–4 day old female midges were injected as described previously [33 (link)] with 50 nl of the same EHDV-2 virus stock. After oral or IT infection, all midges were kept at 25°C and fed 10% sucrose solution ad libitum.
The study area supported a diverse community of large mammals. Carnivores included wolves, black bears (Ursus americanus), grizzly bears (U. arctos), coyotes (Canis latrans), and red foxes (Vulpes vulpes). Ungulates included elk, mule deer, moose, bison (Bison bison), pronghorn, bighorn sheep, and a very small number of white-tailed deer (Odocoileus virginianus). Deer, elk, bighorn sheep, and pronghorn exhibited seasonal migrations [7 (link),17 ,18 (link),19 (link)].
Most recents protocols related to «Odocoileus virginianus»
All activities involving animals during this study were performed in accordance with the Animal Welfare Act, the Office of Laboratory Animal Welfare and Pennsylvania State University Institutional Animal Care and Use Committee (IACUC) policies (PSU Protocol No. PROTO202101784, Approval Date: February 15, 2021).
The concentrations of fipronil and fipronil metabolites within various tissues (Ct) were estimated for 16 FDF-treated deer and two control deer (LOQ = 0.04 ppb). Differences in Ct values among all tissue classifications (fat, meat, meat by-products, liver) were estimated using a Kruskal–Wallis H-test followed by a Wilcoxon signed-rank test within each pair. Differences in Ct values between the T48 and T120 exposure groups estimated for each tissue classification and differences in Ct values of each tissue classification within each test subgroup were estimated using a Wilcoxon signed-rank test. The Ct was compared with the MRL established by the US EPA for ruminant cattle [47 (link)] (meat/muscle = 40 ppb; liver = 100 ppb; meat by-products = 40 ppb; fat = 400 ppb) which are utilized by the US Food and Drug Administration (FDA) when evaluating potential products. The Ct values recorded at each time point post-exposure (day 15, day 29) were used to develop exponential equations to approximate the rate of fipronil degradation for each tissue classification as a function of the number of days post-exposure. The equation was formulated as follows, and is functionally similar to equations previously utilized by Poché et al. [29 (link)] to represent fipronil degradation in bovid plasma and feces: where Ɵ1 = Theta-1 estimate, Ɵ2 = Theta-2 estimate, EXP = exponential, x = days post-exposure.
All analyses were performed using the current versions of JMP statistical software (version 15) (SAS Institute, Cary, NC, USA) and Microsoft Excel. Differences were considered significant if P < 0.05.
Vector-host association (
The feeding capsules utilized in this study were specifically designed for holding blood-feeding I. scapularis and A. americanum. Feeding capsules allow for the containment and localization of ticks and aid in facilitating blood-feeding [40 (link)]. The traditional stockinet sleeve method for feeding ticks on cattle [41 (link)–43 ] was determined to be inadequate for white-tailed deer. We instead developed a feeding capsule for deer application, which was in part based upon feeding capsules for ticks (referred to hereafter as tick feeding capsules) previously designed for tick-feeding on rabbits and sheep [44 ]. To make each capsule, sheets of ethylene–vinyl acetate foam were cut into three square pieces. Each square had a different outside area, allowing for flexibility (base, approx. 12 × 12 cm; middle, approx. 9 × 9 cm; top, approx. 7 × 7 cm), and had a combined depth of approximately 18 mm. The center of each square was cut away, creating an opening. The inner surface areas of the base and middle piece openings were each approximately 7 × 7 cm; the top piece had a smaller opening (approx. 1.5 × 1.5 cm) through which the ticks were to be inserted, which decreased the probability that ticks would escape through the top of the capsule (Additional file
Deer were anesthetized using an intramuscular injection of telazol and xylazine at dosages of approximately 3 mg/kg and approximately 2.5 mg/kg, respectively. Once fully anesthetized, deer were weighed to the nearest 0.1 kg using a certified balance. Prior to blood collection and capsule attachment, large patches of fur on the neck were trimmed using electric horse clippers (Wahl®; Wahl Clipper Corp., Sterling, IL, USA). Prior to capsule attachment, 10 ml of blood was collected from the jugular vein of each deer using a 20-gauge needle. The blood from each individual deer was immediately placed into a vacutainer containing EDTA and was centrifuged for 10 min at 7000 revolutions/min. The plasma was transferred to 1.5-ml centrifuge tubes, which were then stored at − 20 °C until analysis.
Two identical tick feeding capsules were attached to opposing sides of the neck of each deer using a liberal amount of fabric glue (Tear Mender, St. Louis, MO, USA). Each capsule was held firmly in place for > 3 min to allow it to adhere to the skin and fur. For each deer, 20 I. scapularis mating pairs were placed within one capsule, and 20 A. americanum mating pairs were placed within the second capsule. Prior to tick attachment, 20 ticks (all same species and sex) were placed into a modified 5-ml syringe. Ticks were chilled in ice for approximately 5–10 min to slow movement. The 20 mating pairs were then carefully plunged into the capsules and a fine mesh lid was applied and reinforced with duct tape. Representative photos and video of the tick attachment process are presented in Fig.
Tick capsule attachment and tick attachment.
Top products related to «Odocoileus virginianus»
More about "Odocoileus virginianus"
This deer species is characterized by its distinctive white-tailed appearance and remarkable adaptability, thriving in a variety of habitats from forested areas to suburban environments.
The Odocoileus virginianus plays a vital role in many ecosystems, serving as a popular target for hunting and wildlife observation.
Researching this versatile and captivating species can provide valuable insights into its biology, behavior, and ecological interactions.
When conducting studies on Odocoileus virginianus, researchers may utilize a range of techniques and tools, such as NuPAGE Bis-Tris gels for protein analysis, Antibody against human ACE2 for investigating potential disease vectors, Middlebrook 7H9 liquid media for microbial growth, Nitric acid for sample preparation, Penicillin/streptomycin for cell culture, TruSeq RNA-Seq protocol for transcriptome analysis, Dulbecco's modified Eagle's media for cell culture, Lipofectamine 3000 for transfection, and SPSS Statistics 25 for data analysis.
FLOQSwabs may also be employed for efficient sample collection.
By leveraging these advanced techniques and technologies, researchers can enhance the reproducibility and accuracy of their Odocoileus virginianus studies, leading to a deeper understanding of this captivating species and its role in the natural world.