The largest database of trusted experimental protocols
> Living Beings > Plant > Arabidopsis

Arabidopsis

Arabidopsis is a small flowering plant in the mustard family that serves as a model organism for plant biology research.
With its small genome, rapid life cycle, and well-characterized genetics, Arabidopsis has become a powerful tool for studying fundamental plant processes like photosynthesis, development, and stress response.
Researchers leverge Arabidopsis to gain insights into plant biology that can be applied to crop improvement and understanding the impact of environmental changes on plant systems.
PubCompare.ai's advanced AI-driven tools can help optimize Arabidopsis research protocols by identifying the most effective and reproducible methods from the literature, preprints, and patents, enhanceing Arabidopsis studies and accelerating plant science discovery.

Most cited protocols related to «Arabidopsis»

Lists of published Arabidopsis gene families were obtained from TAIR (http://www.arabidopsis.org/browse/genefamily/index.jsp). Only families with more than nine genes were considered in order to have enough statistical power to detect enrichment of duplication modes. Arabidopsis disease resistance gene homologs were downloaded from the NIBLRRS Project website (http://niblrrs.ucdavis.edu).
Publication 2012
Arabidopsis Disease Resistance Genes
Whole-genome protein sequences from Arabidopsis, Populus, Vitis, Glycine, Oryza, Brachypodium, Sorghum and Zea were merged and searched against themselves for homology using BLASTP with an E-value cutoff of 10−5. Default parameters of OrthoMCL (50 (link)) were used. The combination of OrthoMCL intermediate files ‘orthologs.txt’ and ‘coorthologs.txt’ (generated by orthomclDumpPairsFiles) was used as the whole set of ortholog pairs.
Publication 2012
Amino Acid Sequence Arabidopsis Brachypodium Genome Glycine Oryza Populus Sorghum Vitis
BS-seq data from the Arabidopsis genome were obtained from [4 (link)]
Publication 2009
Arabidopsis Genome
Leaves (width: 2 cm, length: 5 cm in optimal light condition; width: 0.5 cm; length: 2.5 cm in low light conditions) were collected from 3 to 5-week-old plants grown under optimal light (ca. 150 μE·m-2·s-1) or low light (ca. 50·μE m-2·s-1) conditions. Arabidopsis protoplasts were isolated in two ways. First, to recreate the current technique, protoplasts were made according to the procedure of Yoo et al. [4 (link)]. Second, in a new technique, selected leaves were used in a 'Tape-Arabidopsis Sandwich' experiment. The upper epidermal surface was stabilized by affixing a strip of Time tape (Time Med, Burr Ridge, IL) while the lower epidermal surface was affixed to a strip of Magic tape (3 M, St. Paul, MN). The Magic tape was then carefully pulled away from the Time tape, peeling away the lower epidermal surface cell layer. The peeled leaves (7 to 10 optimal-light-growth leaves, about 1-2 g, up to 5 g), still adhering to the Time tape, were transferred to a Petri dish containing 10 mL of enzyme solution [1% cellulase 'Onozuka' R10 (Yakult, Tokyo, Japan), 0.25% macerozyme 'Onozuka' R10 (Yakult), 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl, 0.1% BSA and 20 mM MES, pH 5.7]. The leaves were gently shaken (40 rpm on a platform shaker) in light for 20 to 60 min until the protoplasts were released into the solution. The protoplasts were centrifuged at 100 × g for 3 min in an Eppendorff A-4-44 rotor (Hamburg, Germany), washed twice with 25 mL of pre-chilled modified W5 solution (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 5 mM glucose, and 2 mM MES, pH 5.7) and incubated on ice for 30 min. During the incubation period, protoplasts were counted using a hemocytometer under a light microscope. The protoplasts were then centrifuged and resuspended in modified MMg solution (0.4 M mannitol, 15 mM MgCl2, and 4 mM MES, pH 5.7) to a final concentration of 2 to 5 × 105 cells/mL.
Publication 2009
Arabidopsis Cells Cellulase Enzymes Epidermal Cells Epidermis Glucose Hyperostosis, Diffuse Idiopathic Skeletal Light Light Microscopy Magnesium Chloride Mannitol Plants Protoplasts Sodium Chloride
We transformed the pHEE2A/B/D1/D2/D3/E/F-TRI, pHEN2C-TRI, pHSE2A-TRI, and pHEE2A-CHLI constructs into Agrobacterium strain GV3101, and transformed pHEN2A/B-TRI into GV3101/pSoup [26 (link)]. We transformed Arabidopsis Col-0 wild-type plants via the floral dip method [45 (link)]. We screened the collected seeds from the T0 plants on MS plates containing 25 mg/L hygromycin, and transplanted the resistant seedlings (T1) to soil. We extracted genomic DNA from T1 transgenic plants grown in soil. To analyze mutations of TRY, CPC, and ETC2, we amplified fragments surrounding the target sites of TRY, CPC, or ETC2 by PCR using gene-specific primers TRY-IDF0/R0, CPC-IDF0/R0, or ETC2-IDF0/R0, respectively [26 (link)]. We submitted purified PCR products for direct sequencing with primers TRY/CPC/ETC2-seqF [26 (link)] located within the PCR fragments. To analyze possible mutations of potential off-target sites of TRY, CPC, and AT5G50230 of the sgRNA targeting ETC2, we amplified fragments surrounding the off-target sites by PCR using gene-specific primers TRY-off-IDF/R, CPC-off-IDF2/R, or 5G50230-off-IDF/R, respectively. We submitted purified PCR products for direct sequencing (as opposed to sequencing of individual clones of PCR products) with primers TRY/CPC/5G50230-off-seqF located within the PCR fragments. To analyze mutations of CHLI1 and CHLI2, we amplified fragments surrounding the target sites of CHLI1 or CHLI2 by PCR using gene-specific primers CHLI1-IDF/R or CHLI2-IDF/R, respectively. We submitted purified PCR products for direct sequencing with primers CHLI1/2-seqF located within the PCR fragments. We then cloned poorly sequenced PCR products, and submitted individual positive clones for sequencing using the T7 primer. To screen the segregated non-transgenic T2 plants, we first screened nine primer combinations, with three forward primers including zCas9-IDF3-2/-IDF5/-IDF6 (located at zCas9) and three reverse primers including rbcS_E9t-IDR/-IDR2 (located at rbcS-E9 terminator) and lacp-IDF (located at the lac promoter of the vector backbone), for more specific primers (Additional file 2: Table S3). We obtained three more specific primer pairs, including zCas9-IDF3-2/rbcS_E9t-IDR2, zCas9-IDF5/lacp-IDF, and zCas9-IDF6/lacp-IDF, with wild-type genomic DNA serving as a negative control and genomic DNA from T1 transgenic plants serving as a positive control (Additional file 2: Table S3). We then performed counterselection PCR with the three primer pairs for screening of non-transgenic T2 plants.
Publication 2015
Agrobacterium Arabidopsis Clone Cells Cloning Vectors DNA Fingerprinting Erythrocytes Genes Genome hygromycin A Mutation Oligonucleotide Primers Plant Embryos Plants Plants, Transgenic Seedlings Strains Vertebral Column

Most recents protocols related to «Arabidopsis»

Example 6

Ceres cDNA 12723147 encodes an Arabidopsis putative aldo/keto reductase. Ectopic expression of Ceres cDNA 12723147 under the control of the CaMV35S promoter induces the following phenotypes:

    • Germination on high concentrations of polyethylene glycol (PEG), mannitol and abscissic acid (ABA).
    • Continued growth on high concentration of PEG, mannitol and ABA.
      Generation and Phenotypic Evaluation of T1 Lines Containing 35S::cDNA 12723147.

Wild-type Arabidopsis Wassilewskija (WS) plants were transformed with a Ti plasmid containing cDNA 12723147 in the sense orientation relative to the CaMV35S constitutive promoter. The Ti plasmid vector used for this construct, CRS338, contains PAT and confers herbicide resistance to transformed plants. Ten independently transformed events were selected and evaluated for their qualitative phenotype in the T1 generation. No positive or negative phenotypes were observed in the T1 plants.

Screens of Superpools on High PEG, Mannitol, and ABA as Surrogate Screens for Drought Tolerance.

Seeds from 13 superpools (1,200 T2 seeds from each superpool) from the CaMV35S or 32449 over-expression lines were tested on 3 drought surrogate screens (high concentrations of PEG, mannitol, and ABA) as described above. T3 seeds were collected from the resistant plants and analyzed for resistance on all three surrogate drought screens.

Once cDNA 12723147 was identified in resistant plants from each of the three surrogate drought screens, the five individual T2 events containing this cDNA (SR01013) were screened on high PEG, mannitol, and ABA to identify events with the resistance phenotype.

Superpools (SP) are referred to as SP1, SP2 and so on. The letter following the hyphen refers to the screen (P=PEG, M=mannitol, and A=ABA) and the number following the letter refers to a number assigned to each plant obtained from that screen on that superpool. For example, SP1-M18 is the 18th plant isolated from a mannitol screen of Superpool 1.

Qualitative and Quantitative Analysis of 2 Independent Events Representing 35S::cDNA 12659859 (SR01010) on PEG, Mannitol and ABA

To identify two independent events of 35S::cDNA 12659859 showing PEG, mannitol, and ABA resistance, 36 seedlings from each of two events, SR01013-01 and -02 were screened as previously described. BastaR segregation was assessed to verify that the lines contained a single insert segregating in a 3:1 (R:S) ratio as calculated by a chi-square test (Table 6-1). Both lines (01 and 02) segregated for a single insert in the T2 generation (Table 1)

TABLE 6-1
BastaR segregation for SR01013 individual events
Probability
EventResistantSensitiveTotalof Chi-test*
SR01013-01305350.14323
SR01013-02306360.24821
SR01013-01-3341360.00248**
SR01013-02-2320320.00109**
*Chi-test to determine whether actual ratio of resistant to sensitive differs form the expected 3:1 ratio.
**Significantly different than a 3:1 (R:S) ratio

Lines SR01013-01 and -02 were chosen as the two events because they had a strong and consistent resistance to PEG, mannitol and ABA. The controls were sown the same day and in the same plate as the individual lines. The PEG (Tables 6-2 and 6-3), mannitol (Tables 6-4 and 6-5) and ABA (Tables 6-6 and 6-7) segregation ratios observed for SR01013-01 and -02 are consistent with the presence of single insert as demonstrated by chi-square, similar to what we observed for BastaR resistance (Table 6-1).

The progeny from one resistant T2 plant from each of these two events were tested in the same manner as the T2. Resistance to PEG, mannitol and ABA was also observed in the T3 generation. Taken together, the segregation of resistant seedlings containing cDNA 12723147 from two events on all three drought surrogate screens and the inheritance of this resistance in a subsequent generation, provide strong evidence that cDNA 12723147 when over-expressed can provide tolerance to drought.

TABLE 6-2
Chi-square analysis assuming a 3:1 (R:S) ratio for progeny of
SR01013-01T2 containing 35S::cDNA 12723147 on PEG.
Probability
EventObservedExpectedχ2of Chi-Test
PEG Resistant22270.9260.054
PEG Sensitive1492.778
36363.704

TABLE 6-3
Chi-square analysis assuming a 3:1 (R:S) ratio for progeny of
SR01013-02 T2 containing 35S::cDNA 12723147 on PEG.
Probability
EventObservedExpectedχ2of Chi-Test
PEG Resistant26270.037.700
PEG Sensitive109.111
3636.148

TABLE 6-4
Chi-square analysis assuming a 3:1 (R:S) ratio for progeny of
SR01013-01 T2 containing 35S::cDNA 12723147 on mannitol.
Probability
EventObservedExpectedχ2of Chi-Test
Mannitol Resistant2827.037.700
Mannitol Sensitive89.111
3636.148

TABLE 6-5
Chi-square analysis assuming a 3:1 (R:S) ratio for progeny of
SR01013-02 T2 containing 35S::cDNA 12723147 on mannitol.
Probability
EventObservedExpectedχ2of Chi-Test
Mannitol Resistant18273.0005
Mannitol Sensitive1899
363612

TABLE 6-6
Chi-square analysis assuming a 3:1 (R:S) ratio for progeny of
SR01013-02 T2 containing 35S::cDNA 12723147 on ABA.
EventObservedExpectedχ2Probability
ABA Resistant1324 5.0427.098
ABA Sensitive19 815.125
323220.167

TABLE 6-7
Chi-square analysis assuming a 3:1 (R:S) ratio for progeny of
SR01013-02 T2 containing 35S::cDNA 12723147 on ABA.
EventObservedExpectedχ2Probability
ABA Resistant1324 5.0427.098
ABA Sensitive19 815.125
323220.167
FIG. 5 provides the results of the consensus sequence (SEQ ID NOs: 178-200) analysis based on Ceres cDNA 12723147.

Patent 2024
14-3-3 Proteins Abscisic Acid Aldo-Keto Reductase Arabidopsis CERE Cloning Vectors Consensus Sequence DNA, Complementary Droughts Drought Tolerance Ectopic Gene Expression Germination Herbicide Resistance Mannitol Pattern, Inheritance Phenotype Plant Embryos Plants Plant Tumor-Inducing Plasmids Polyethylene Glycols Seedlings

Example 12

Plant transformation—The Arabidopsis thaliana var Columbia (To plants) were transformed according to the Floral Dip procedure [Clough S J, Bent A F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16(6): 735-43; and Desfeux C, Clough S J, Bent A F. (2000) Female reproductive tissues were the primary targets of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123(3): 895-904] with minor modifications. Briefly, Arabidopsis thaliana Columbia (C010) T0 plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hours light/dark cycles. The T0 plants were ready for transformation six days before anthesis.

Single colonies of Agrobacterium carrying the binary vectors harboring the genes of some embodiments of the invention were cultured in YEBS medium (Yeast extract 1 gr/L, Beef extract 5 gr/L, MgSO4*7H2O, Bacto peptone 5 gr/L) supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28° C. for 48 hours under vigorous shaking to desired optical density at 600 nm of 0.85 to 1.1. Before transformation into plants, 60 μl of Silwet L-77 was added into 300 ml of the Agrobacterium suspension.

Transformation of T0 plants was performed by inverting each plant into an Agrobacterium suspension such that the above ground plant tissue was submerged for 1 minute. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and was kept in the dark at room temperature for 18 hours to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques were brown and dry, then seeds were harvested from plants and kept at room temperature until sowing.

For generating T1 and T2 transgenic plants harboring the genes of some embodiments of the invention, seeds collected from transgenic T0 plants were surface-sterilized by exposing to chlorine fumes (6% sodium hypochlorite with 1.3% HCl) for 100 minutes. The surface-sterilized seeds were sown on culture plates containing half-strength Murashig-Skoog (Duchefa); 2% sucrose; 0.5% plant agar; 50 mg/L kanamycin; and 200 mg/L carbenicylin (Duchefa). The culture plates were incubated at 4° C. for 48 hours and then were transferred to a growth room at 25° C. for three weeks. Following incubation, the T1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants were allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.

Patent 2024
Agar Agrobacterium Aluminum Animals, Transgenic Arabidopsis Arabidopsis thalianas Bacto-peptone Beef Chlorine Cloning Vectors Culture Media Decompression Sickness Females Genes Genes, Plant Gentamicin Humidity Infection Kanamycin Marijuana Abuse Plant Diseases Plant Embryos Plants Plants, Transgenic Reproduction Saccharomyces cerevisiae silwet L-77 Sodium Hypochlorite Sucrose Sulfate, Magnesium Tissues
The genome annotation data were collected and mapped on the chromosomes using the TBtools software (v0.67) to identify the physical chromosomal location of all anthocyanin-related genes in Arabidopsis and six Brassica species [4 ]. The collinearity of intraspecific and interspecific genes was determined using the BLASTP (E-value: 1e-10, max_target_seqs:1) and Multiple Collinearity Scan toolkit (MCSscanX, gap_penalty: -1, E-value: 1e-10) [71 (link)], SynOrths software (E-value < 1e-20, Query gene = 20, Reference gene = 100) has been used to determining the collinear orthologous [8 (link)], TBtools software (v0.67) was used to drop the collinearity genes on each chromosome [4 ].
Publication 2023
Anthocyanins Arabidopsis Base Sequence Brassica Chromosomes Colinearity, Chromosomal Genes Genome Physical Examination Radionuclide Imaging
In this study, the genome and protein sequences of the B. rapa (Chiifu-401–42 v3.0), B. oleracea (HDEM), B. nigra (Ni100-LR), B. napus (Darmor-bzh v10) were downloaded from the BRAD database [7 ]; http://brassicadb.cn), B. juncea (SCYZ) genome sequence from NCBI PRJNA615316 [22 ] (https://www.ncbi.nlm.nih.gov/), B. carinata (zd-1) genome sequence from GenBank JAAMPC000000000 [66 ] (https://www.ncbi.nlm.nih.gov/), and the anthocyanin-related genes genome and protein sequences were downloaded from the Arabidopsis database (TAIR; http://www.arabidopsis.org/index.jsp). In order to accurately identify anthocyanin-related genes, we mainly divide it into the following steps: Firstly, local BLASTP has been used to search anthocyanin-related genes with E-value < 1e-20, 55 anthocyanin-related genes protein sequences were derived from Arabidopsis. Secondly, the candidate anthocyanin-related genes in the six Brassica species were identified by a local BLASTN search with 55 anthocyanin-related genes coding sequence from Arabidopsis to identify candidates with E-value < 1e-20, identity > 70%, coverage > 60%. Thirdly, SynOrths software [8 (link)] has been used to determining the collinear orthologous of two genes based on their own sequence similarity and the homology of their flanking genes, and then extracting the colinear genes of anthocyanin-related genes. Finally, the BLASTP, BLASTN and SynOrths software identified results were pooled and deduplicated, and determined in conjunction with PFAM protein family database (https://pfam.xfam.org/).
Publication 2023
Amino Acid Sequence Anthocyanins Arabidopsis Base Sequence Brassica Genes Genome Open Reading Frames Substantia Nigra
The TT2 and MYB5 protein sequences of the six Brassica species and Arabidopsis were used to generate phylogenetic trees via ClustalX [26 (link)] and MAFFT sofaware (Katoh and Standley, 2013) multiple sequence alignments with the default parameters. A maximum likelihood (ML) phylogenetic tree was constructed using FastTree2 software (v2.1.11), in which JTT (Jones-Taylor-Thornton) model was the best substitution model [52 (link)]. The TT2 and MYB5 promoter regions of 2000 bp regions upstream of the translational start sites ATG were examined based on their positions in the genomes of six Brassica species and Arabidopsis using Samtools software (v 1.8), which was used to identify the cis-elements in the promoters according to the online PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). The gene structures of TT2 and MYB5 were analyzed according to the GFF annotation file of the gene position information in the six Brassica crops and Arabidopsis database. The MEME online tool (https://meme-suite.org/meme/) was used to investigate conserved domains, and the WEBLoGo online tool (https://weblogo.berkeley.edu/) and SWISS-MODEL online tool (https://swissmodel.expasy.org/) was used to draw spatial structure. TBtools software (v0.67) was used to draw the TT2 and MYB5 to the different copies of each Brassica species, including phylogenetic, promoter characteristics, gene structure, conserved motifs [4 ].
Publication 2023
Amino Acid Sequence Arabidopsis Brassica Crop, Avian Gene Order Genes Genetic Structures Genome Protein Biosynthesis Sequence Alignment

Top products related to «Arabidopsis»

Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in Germany, United States, United Kingdom, Netherlands, China, Japan, Canada, Spain, France, Australia, Italy, India, Sweden
The RNeasy Plant Mini Kit is a laboratory equipment designed for the isolation and purification of total RNA from plant tissues and cells. It utilizes a silica-membrane-based technology to efficiently capture and purify RNA molecules, enabling subsequent analysis and downstream applications.
Sourced in Japan, China, United States, France, Germany, Switzerland, Canada, Sweden, Italy, Puerto Rico, Singapore
The PrimeScript RT reagent kit is a reverse transcription kit designed for the synthesis of first-strand cDNA from RNA templates. The kit includes RNase-free reagents and enzymes necessary for the reverse transcription process.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in United States, China, Germany, United Kingdom, Switzerland, Japan, France, Italy, Spain, Austria, Australia, Hong Kong, Finland
The Dual-Luciferase Reporter Assay System is a laboratory tool designed to measure and compare the activity of two different luciferase reporter genes simultaneously. The system provides a quantitative method for analyzing gene expression and regulation in transfected or transduced cells.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, Germany, Lithuania, Canada, United Kingdom, China, Japan, Switzerland, Italy, France, Spain, Australia, Belgium, Denmark, Argentina, Sao Tome and Principe, Singapore, Poland, Finland, Austria, India, Netherlands, Ireland, Viet Nam
DNase I is an enzyme used in molecular biology laboratories to degrade DNA. It catalyzes the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, effectively breaking down DNA molecules. This enzyme is commonly used to remove contaminating DNA from RNA preparations, allowing for more accurate downstream analysis of RNA.
Sourced in United States, Germany, United Kingdom, Australia, Japan
The PENTR/D-TOPO vector is a plasmid designed for direct cloning of PCR products. It features a pUC origin of replication and a kanamycin resistance gene for selection in E. coli. The vector includes TOPO cloning sites that facilitate the direct insertion of PCR products without the need for restriction enzyme digestion or ligation.
Sourced in United States, China, Germany, United Kingdom, Hong Kong, Canada, Switzerland, Australia, France, Japan, Italy, Sweden, Denmark, Cameroon, Spain, India, Netherlands, Belgium, Norway, Singapore, Brazil
The HiSeq 2000 is a high-throughput DNA sequencing system designed by Illumina. It utilizes sequencing-by-synthesis technology to generate large volumes of sequence data. The HiSeq 2000 is capable of producing up to 600 gigabases of sequence data per run.
Sourced in United States, Germany, United Kingdom
The PENTR/D-TOPO is a vector system designed for the efficient cloning of Polymerase Chain Reaction (PCR) products. It facilitates the direct insertion of PCR amplicons into a plasmid vector without the need for restriction enzyme digestion or ligase. The vector is pre-linearized and contains complementary 3' single-stranded overhangs, allowing for the seamless ligation of PCR products.

More about "Arabidopsis"

Arabidopsis, a small flowering plant in the mustard family, has become a powerful model organism for plant biology research.
Its small genome, rapid life cycle, and well-characterized genetics make it an invaluable tool for studying fundamental plant processes like photosynthesis, development, and stress response.
Researchers leverage Arabidopsis to gain insights into plant biology that can be applied to crop improvement and understanding the impact of environmental changes on plant systems.
Optimizing Arabidopsis research protocols is crucial for advancing plant science discovery.
PubCompare.ai's advanced AI-driven tools can help researchers identify the most effective and reproducible methods from the literature, preprints, and patents.
This includes techniques like using TRIzol reagent or the RNeasy Plant Mini Kit for RNA extraction, the PrimeScript RT reagent kit for reverse transcription, and the Dual-Luciferase Reporter Assay System for gene expression analysis.
The RNeasy Mini Kit and DNase I can also be used for DNA purification and removal, respectively.
Researchers can leverage PubCompare.ai's platform to streamline their Arabidopsis studies by accessing a wide range of optimized protocols, including those utilizing the PENTR/D-TOPO vector for gene cloning and the HiSeq 2000 for high-throughput sequencing.
By identifying the most effective and reproducible methods, PubCompare.ai helps enhance the quality and efficiency of Arabidopsis research, ultimately accelerating plant science discovery and applications.