Arabidopsis
With its small genome, rapid life cycle, and well-characterized genetics, Arabidopsis has become a powerful tool for studying fundamental plant processes like photosynthesis, development, and stress response.
Researchers leverge Arabidopsis to gain insights into plant biology that can be applied to crop improvement and understanding the impact of environmental changes on plant systems.
PubCompare.ai's advanced AI-driven tools can help optimize Arabidopsis research protocols by identifying the most effective and reproducible methods from the literature, preprints, and patents, enhanceing Arabidopsis studies and accelerating plant science discovery.
Most cited protocols related to «Arabidopsis»
Most recents protocols related to «Arabidopsis»
Example 6
Ceres cDNA 12723147 encodes an Arabidopsis putative aldo/keto reductase. Ectopic expression of Ceres cDNA 12723147 under the control of the CaMV35S promoter induces the following phenotypes:
-
- Germination on high concentrations of polyethylene glycol (PEG), mannitol and abscissic acid (ABA).
- Continued growth on high concentration of PEG, mannitol and ABA.
Generation and Phenotypic Evaluation of T1 Lines Containing 35S::cDNA 12723147.
Wild-type Arabidopsis Wassilewskija (WS) plants were transformed with a Ti plasmid containing cDNA 12723147 in the sense orientation relative to the CaMV35S constitutive promoter. The Ti plasmid vector used for this construct, CRS338, contains PAT and confers herbicide resistance to transformed plants. Ten independently transformed events were selected and evaluated for their qualitative phenotype in the T1 generation. No positive or negative phenotypes were observed in the T1 plants.
Screens of Superpools on High PEG, Mannitol, and ABA as Surrogate Screens for Drought Tolerance.
Seeds from 13 superpools (1,200 T2 seeds from each superpool) from the CaMV35S or 32449 over-expression lines were tested on 3 drought surrogate screens (high concentrations of PEG, mannitol, and ABA) as described above. T3 seeds were collected from the resistant plants and analyzed for resistance on all three surrogate drought screens.
Once cDNA 12723147 was identified in resistant plants from each of the three surrogate drought screens, the five individual T2 events containing this cDNA (SR01013) were screened on high PEG, mannitol, and ABA to identify events with the resistance phenotype.
Superpools (SP) are referred to as SP1, SP2 and so on. The letter following the hyphen refers to the screen (P=PEG, M=mannitol, and A=ABA) and the number following the letter refers to a number assigned to each plant obtained from that screen on that superpool. For example, SP1-M18 is the 18th plant isolated from a mannitol screen of Superpool 1.
Qualitative and Quantitative Analysis of 2 Independent Events Representing 35S::cDNA 12659859 (SR01010) on PEG, Mannitol and ABA
To identify two independent events of 35S::cDNA 12659859 showing PEG, mannitol, and ABA resistance, 36 seedlings from each of two events, SR01013-01 and -02 were screened as previously described. BastaR segregation was assessed to verify that the lines contained a single insert segregating in a 3:1 (R:S) ratio as calculated by a chi-square test (Table 6-1). Both lines (01 and 02) segregated for a single insert in the T2 generation (Table 1)
Lines SR01013-01 and -02 were chosen as the two events because they had a strong and consistent resistance to PEG, mannitol and ABA. The controls were sown the same day and in the same plate as the individual lines. The PEG (Tables 6-2 and 6-3), mannitol (Tables 6-4 and 6-5) and ABA (Tables 6-6 and 6-7) segregation ratios observed for SR01013-01 and -02 are consistent with the presence of single insert as demonstrated by chi-square, similar to what we observed for BastaR resistance (Table 6-1).
The progeny from one resistant T2 plant from each of these two events were tested in the same manner as the T2. Resistance to PEG, mannitol and ABA was also observed in the T3 generation. Taken together, the segregation of resistant seedlings containing cDNA 12723147 from two events on all three drought surrogate screens and the inheritance of this resistance in a subsequent generation, provide strong evidence that cDNA 12723147 when over-expressed can provide tolerance to drought.
Example 12
Plant transformation—The Arabidopsis thaliana var Columbia (To plants) were transformed according to the Floral Dip procedure [Clough S J, Bent A F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16(6): 735-43; and Desfeux C, Clough S J, Bent A F. (2000) Female reproductive tissues were the primary targets of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123(3): 895-904] with minor modifications. Briefly, Arabidopsis thaliana Columbia (C010) T0 plants were sown in 250 ml pots filled with wet peat-based growth mix. The pots were covered with aluminum foil and a plastic dome, kept at 4° C. for 3-4 days, then uncovered and incubated in a growth chamber at 18-24° C. under 16/8 hours light/dark cycles. The T0 plants were ready for transformation six days before anthesis.
Single colonies of Agrobacterium carrying the binary vectors harboring the genes of some embodiments of the invention were cultured in YEBS medium (Yeast extract 1 gr/L, Beef extract 5 gr/L, MgSO4*7H2O, Bacto peptone 5 gr/L) supplemented with kanamycin (50 mg/L) and gentamycin (50 mg/L). The cultures were incubated at 28° C. for 48 hours under vigorous shaking to desired optical density at 600 nm of 0.85 to 1.1. Before transformation into plants, 60 μl of Silwet L-77 was added into 300 ml of the Agrobacterium suspension.
Transformation of T0 plants was performed by inverting each plant into an Agrobacterium suspension such that the above ground plant tissue was submerged for 1 minute. Each inoculated T0 plant was immediately placed in a plastic tray, then covered with clear plastic dome to maintain humidity and was kept in the dark at room temperature for 18 hours to facilitate infection and transformation. Transformed (transgenic) plants were then uncovered and transferred to a greenhouse for recovery and maturation. The transgenic T0 plants were grown in the greenhouse for 3-5 weeks until siliques were brown and dry, then seeds were harvested from plants and kept at room temperature until sowing.
For generating T1 and T2 transgenic plants harboring the genes of some embodiments of the invention, seeds collected from transgenic T0 plants were surface-sterilized by exposing to chlorine fumes (6% sodium hypochlorite with 1.3% HCl) for 100 minutes. The surface-sterilized seeds were sown on culture plates containing half-strength Murashig-Skoog (Duchefa); 2% sucrose; 0.5% plant agar; 50 mg/L kanamycin; and 200 mg/L carbenicylin (Duchefa). The culture plates were incubated at 4° C. for 48 hours and then were transferred to a growth room at 25° C. for three weeks. Following incubation, the T1 plants were removed from culture plates and planted in growth mix contained in 250 ml pots. The transgenic plants were allowed to grow in a greenhouse to maturity. Seeds harvested from T1 plants were cultured and grown to maturity as T2 plants under the same conditions as used for culturing and growing the T1 plants.
Top products related to «Arabidopsis»
More about "Arabidopsis"
Its small genome, rapid life cycle, and well-characterized genetics make it an invaluable tool for studying fundamental plant processes like photosynthesis, development, and stress response.
Researchers leverage Arabidopsis to gain insights into plant biology that can be applied to crop improvement and understanding the impact of environmental changes on plant systems.
Optimizing Arabidopsis research protocols is crucial for advancing plant science discovery.
PubCompare.ai's advanced AI-driven tools can help researchers identify the most effective and reproducible methods from the literature, preprints, and patents.
This includes techniques like using TRIzol reagent or the RNeasy Plant Mini Kit for RNA extraction, the PrimeScript RT reagent kit for reverse transcription, and the Dual-Luciferase Reporter Assay System for gene expression analysis.
The RNeasy Mini Kit and DNase I can also be used for DNA purification and removal, respectively.
Researchers can leverage PubCompare.ai's platform to streamline their Arabidopsis studies by accessing a wide range of optimized protocols, including those utilizing the PENTR/D-TOPO vector for gene cloning and the HiSeq 2000 for high-throughput sequencing.
By identifying the most effective and reproducible methods, PubCompare.ai helps enhance the quality and efficiency of Arabidopsis research, ultimately accelerating plant science discovery and applications.