The largest database of trusted experimental protocols
> Living Beings > Plant > Solanum tuberosum

Solanum tuberosum

Solanum tuberosum, commonly known as the potato, is a starchy tuber crop cultivated worldwide for its edible underground stems.
It belongs to the nightshade family Solanaceae and is a perennial plant that is often grown as an annual.
Potatoes are a major food source, rich in carbohydrates, vitamins, and minerals, and are utilized in a variety of culinary and industrial applications.
Resesarchers can leverage PubCompare.ai to optimize their potato studies, locating the most relevant protocols from literature, preprints, and patents, while receiving accuarate comparisons to identify the best methods and products.
This AI-driven platform enhances reproducibility and accuracy in potato research.

Most cited protocols related to «Solanum tuberosum»

A total of 21 Gb of Roche/454 Titanium shotgun and matepair reads and 3.3 Gb of Sanger paired-end reads, including ~200,000 BAC and fosmid end sequence pairs, were generated from the ‘Heinz 1706’ inbred line (Supplementary Sections 1.1-1.7), assembled using both Newbler and CABOG and integrated into a single assembly (Supplementary Sections 1.17-1.18). The scaffolds were anchored using two BAC-based physical maps, one high density genetic map, overgo hybridization and genome-wide BAC FISH (Supplementary Sections 1.8-1.16 and 1.19). Over 99.9% of BAC/fosmid end pairs mapped consistently on the assembly and over 98% of EST sequences could be aligned to the assembly (Supplementary Section 1.20). Chloroplast genome insertions in the nuclear genome were validated using a matepair method and the flanking regions were identified (Supplementary Sections 1.22-1.24). Annotation was carried out using a pipeline based on EuGene that integrates de novo gene prediction, RNA-Seq alignment and rich function annotation (Supplementary Section 2). To facilitate interspecies comparison, the potato genome was re-annotated using the same pipeline. LTR retrotransposons were detected de novo with the LTR-STRUC program and dated by the sequence divergence between left and right solo LTR (Supplementary Section 2.10). The genome of S. pimpinellifolium was sequenced to 40x depth using Illumina paired end reads and assembled using ABySS (Supplementary Section 3). The tomato and potato genomes were aligned using LASTZ (Supplementary Section 4.1). Identification of triplicated regions was done using BLASTP, in-house generated scripts and three way comparisons between tomato, potato and S. pimpinellifolium using MCscan (Supplementary Sections 4.2-4.4). Specific gene families/groups (genes for ascorbate, carotenoid and jasmonate biosynthesis, cytochrome P450s, genes controlling cell wall architecture, hormonal and transcriptional regulators, resistance genes) were subjected to expert curation/analysis, (Supplementary Section 5). PHYML and MEGA were used to reconstruct phylogenetic trees and MCSCAN was used to infer gene collinearity (Supplementary Section 5.2).
Publication 2012
Anabolism Carotenoids Cell Wall Chromosome Mapping Crossbreeding Cytochrome P450 Fishes Genes Genome Genome, Chloroplast Insertion Mutation jasmonate Lycopersicon esculentum Microtubule-Associated Proteins Physical Examination Retrotransposons RNA-Seq Solanum tuberosum Titanium Transcription, Genetic
For the extended BRH approach, we downloaded the genome (assemblies) and gene annotation of the plant species Arabidopsis lyrata, Arabidopsis thaliana, Carica papaya, Oryza sativa and Solanum tuberosum from Phytozome (16 (link)), and the animal species Homo sapiens, Gallus gallus and Mus musculus from Ensembl (17 (link)) (cf. Text S3).
Additionally, we downloaded genome assembly and gene annotation of Nicotiana benthamiana v0.4.4 (18 (link)) from ftp://ftp.solgenomics.net/genomes/Nicotiana_benthamiana/assemblies/ for mapping RNA-seq data and assessing GeMoMa predictions.
For all analyses, we discarded gene models from the given annotation with missing start or stop codon, premature stop codon(s) or ambiguous nucleotide(s). In addition, we only used one representative gene model if several gene models of a gene have the same CDS, i.e. only differ in their UTRs.
Publication 2016
Animals Arabidopsis Arabidopsis thalianas Carica papaya Chickens Codon, Nonsense Codon, Terminator Gene Annotation Genes Genome Homo sapiens Mice, House Multiple Birth Offspring Nicotiana Nucleotides Oryza sativa Plants RNA-Seq Solanum tuberosum Untranslated Regions
In the study following materials were used: pharmaceutical secondary standards (Certified Reference Material) of acetylsalicylic acid, salicylic acid and glycine (Fluka). Talc (Imifabi) and potato starch (Peepes) were used as excipients for dosage 100 mg ASA and 40 mg GLY, whereas microcrystalline cellulose (JRS Pharma) and maize starch (Roquette) were used as excipients for dosage 150 mg ASA and 40 mg GLY as well as 75 mg ASA and 40 mg GLY. Acetonitrile—gradient grade (Sigma-Aldrich) and orthophosphoric acid (Chempur). Deionized water was obtained by means of ELGA Purelab UHQ PS (High Wycombe, Bucks, UK). Syringe nylon filters (0.45 µm) (Agilent Technologies) were used.
Full text: Click here
Publication 2022
acetonitrile Cornstarch Excipients microcrystalline cellulose Nylons Pharmaceutical Preparations phosphoric acid Salicylic Acid Solanum tuberosum Starch Syringes Talc
We created an overall plant-based diet index (PDI), a healthful plant-based diet index (hPDI), and an unhealthful plant-based diet index (uPDI). The procedure we used to create these indices is similar to the one used by Martínez-González et al. [13 (link)]; their “provegetarian food pattern” is similar in composition to our PDI. Frequencies of consumption of each food were converted into servings consumed per day. Then the number of servings of foods that belonged to each of 18 food groups were added up. The 18 food groups were created on the basis of nutrient and culinary similarities, within larger categories of animal foods and healthy and less healthy plant foods. We distinguished between healthy and less healthy plant foods using existing knowledge of associations of the foods with T2D, other outcomes (CVD, certain cancers), and intermediate conditions (obesity, hypertension, lipids, inflammation). Plant foods not clearly associated in one direction with several health outcomes, specifically alcoholic beverages, were not included in the indices. We also excluded margarine from the indices, as its fatty acid composition has changed over time from high trans fat to high unsaturated fat. We controlled for alcoholic beverages and margarine consumption in the analysis.
Healthy plant food groups included whole grains, fruits, vegetables, nuts, legumes, vegetable oils, and tea/coffee, whereas less healthy plant food groups included fruit juices, sugar-sweetened beverages, refined grains, potatoes, and sweets/desserts. Animal food groups included animal fats, dairy, eggs, fish/seafood, meat (poultry and red meat), and miscellaneous animal-based foods.
S1 Table details examples of foods constituting the food groups. The 18 food groups were divided into quintiles of consumption, and each quintile was assigned a score between 1 and 5. For PDI, participants received a score of 5 for each plant food group for which they were above the highest quintile of consumption, a score of 4 for each plant food group for which they were above the second highest quintile but below the highest quintile, and so on, with a score of 1 for consumption below the lowest quintile (positive scores). On the other hand, participants received a score of 1 for each animal food group for which they were above the highest quintile of consumption, a score of 2 for each animal food group for which they were between the highest and second highest quintiles, and so on, with a score of 5 for consumption below the lowest quintile (reverse scores). For hPDI, positive scores were given to healthy plant food groups, and reverse scores to less healthy plant food groups and animal food groups. Finally, for uPDI, positive scores were given to less healthy plant food groups, and reverse scores to healthy plant food groups and animal food groups. The 18 food group scores for an individual were summed to obtain the indices, with a theoretical range of 18 (lowest possible score) to 90 (highest possible score). The observed ranges at baseline were 24–85 (PDI), 28–86 (hPDI), and 27–90 (uPDI) across the cohorts. The indices were analyzed as deciles, with energy intake adjusted at the analysis stage.
Full text: Click here
Publication 2016
Alcoholic Beverages Animals Cereals Coffee Diet Eggs Fabaceae Fats Fats, Unsaturated Fatty Acids Feeds, Animal Fishes Food Fowls, Domestic Fruit Fruit Juices High Blood Pressures Inflammation Lipids Malignant Neoplasms Margarine Meat Nutrients Nuts Obesity Plants Plants, Edible Red Meat Seafood Solanum tuberosum Sugar-Sweetened Beverages Vegetable Oils Vegetables Whole Grains
Studies were carried out in Walukuba subcounty, Jinja District (00° 26′ 33.2″ N, 33°13′ 32.3″ E); Kihihi subcounty, Kanungu District (00°45′ 03.1″ S, 29°42′ 03.6″ E); and Nagongera subcounty, Tororo District (00°46′ 10.6″, N 34°01′ 34.1″ E) (Figure 1). Jinja is in the southeast region at an elevation of 1,215 m above sea level and the study site is peri-urban, close to a swampy area near Lake Victoria. The major malaria vector species here was Anopheles gambiae s.s. ten years ago [16 (link)], but it is now Anopheles arabiensis[17 (link)]. Kanungu is a rural area of rolling hills in western Uganda located at an elevation of 1,310 m above sea level, where farmers grow bananas, millet, rice, cassava, potatoes, sweet potatoes, tomatoes, maize, groundnuts, and beans. The main vector here is An. gambiae s.s.. Tororo is located in the eastern region at an elevation of 1,185 m above sea level in an area of savannah grassland interrupted by bare rocky outcrops and low-lying wetlands, where maize, rice, cassava, sweet potatoes, sorghum, groundnuts, soya beans, beans, and millet are cultivated. The major malaria vector species reported for the region are Anopheles gambiae s.s. and Anopheles funestus with small numbers of An. arabiensis[16 (link),18 (link)]. There are typically two rainy seasons in Uganda (March to May and August to October) with annual rainfall of 1,000-1,500 mm.
Full text: Click here
Publication 2014
Anopheles Anopheles gambiae Banana Cloning Vectors Farmers Lycopersicon esculentum Maize Malaria Manihot Millets Oryza sativa Potato, Sweet Rain Solanum tuberosum Sorghum Soybeans Wetlands

Most recents protocols related to «Solanum tuberosum»

Example 1

119 Dicty strains were screened for their ability to feed on Dickeya (Dd) or Pectobacterium (Pcc) at 10° C. This assay was performed by inoculating Dd or Pcc on a low nutrient medium (SM2 agar) that supports both bacterial and Dicty growth. Dicty spores from individual strains were then inoculated on top of the bacterial growth and incubated at 10° C. to mimic potato storage temperatures. Dicty strains that successfully fed on Dd or Pcc created visible clearings in the lawn of bacterial growth and ultimately produced sporangia (fruiting bodies) that rose from the agar surface. An example of the phenotype that was considered successful clearing of bacteria is shown in FIG. 3A. From this initial screen, 36 Dicty strains that were capable of feeding on both Dd and Pcc at 10° C. were identified (FIG. 1B).

Of the 36 strains capable of feeding on both Dd and Pcc, 34 came from the Group 4 Dictyostelids (FIG. 1). This group includes D. discoideum, D. giganteum, D. minutum, D. mucoroides, D. purpureum, and D. sphaerocephalum (72). The results indicate that this group is particularly enriched in Dd and Pcc-feeding strains.

A further experiment was performed to identify Dicty species capable of feeding on biofilms of Dd and Pcc. Microporous polycarbonate membranes (MPMs) are widely reported to support biofilm formation of numerous Enterobacteriaceae species (2, 63, 70, 71). It was determined if Dd and Pcc formed biofilms on MPMs and determined if Dicty strains were capable of feeding on these biofilms. Membranes were placed on top of SM2 agar to provide Dd and Pcc with nutrients for growth. Bacteria were then inoculated on the surface of the MPMs and growth was monitored over the course of 1 week by washing bacteria off the membranes and performing dilution plating for colony counting. Growth of both bacterial strains plateaued around 4 dpi (FIG. 2).

From these results, it was determined that the best time to collect inoculated MPMs for biofilm analysis was at 2 dpi. Scanning electron microscopy (SEM) is commonly used to confirm biofilm formation by detecting extracellular polymeric substance (EPS) that forms the biofilm matrix (2). Samples of Dd and Pcc after 2 days of growth on MPMs in the presence and absence of Dicty are analyzed using SEM.

19 Dicty strains identified as active were tested for their ability to feed on Dd and Pcc growing on MPMs. These experiments were performed by establishing Dd and Pcc growth on MPMs overlaid on SM2 agar at 37° C. for 24 hr. Dicty spores were then applied to the center of bacterial growth in a 5 uL drop containing 1000 spores. Bacteria and Dicty were incubated at 10° C. for 2 weeks before remaining bacteria were washed off and colonies were counted. Representative images of Dicty growing on Dd and Pcc on MPMs are shown in FIG. 3A.

No Dicty strains produced a statistically significant reduction in Dd viability compared to the non-treated control. However, treating Dd lawns with Cohen 36, Cohen 9, WS-15, WS-20, and WS-69 consistently reduced the number of viable bacteria by approximately 100,000-fold compared to the non-treated control (FIG. 3B). Cohen 9 was the only Dicty strain that produced a statistically significant reduction in viability of Pcc compared to the non-treated control (FIG. 3C). Other Dicty strains capable of reducing the number of viable Pcc by at least 100,000-fold were Cohen 35, Cohen 36, WS-647, and WS-69 (FIG. 3C).

It was observed that Dicty strains Cohen 9, Cohen 36, and WS-69 were capable of feeding on both Dd and Pcc when these bacteria were cultured on SM2 agar and MPMs (FIGS. 1 and 3). These strains were also particularly effective feeders as all three reduced the number of viable Dd and Pcc on MPMs at 10° C. by 100,000-fold compared to the non-treated control (FIGS. 3B and 3C).

To determine if these strains could suppress soft rot development on seed potato tubers, tubers were tab-inoculated with Dd or Pcc and treated with spores from each Dicty strain. Seed potatoes were surface-sterilized and punctured using a sterile screw to a depth of 1.5 mm. Overnight cultures of Dd and Pcc were suspended in 10 mM potassium phosphate buffer, diluted to an OD600 of approximately 0.003, and administered as a 5 μL drop into the wound. Next, 5 of a Dicty spore suspension (100,000 spores) was added to the wound. Inoculated seed potatoes were placed in a plastic container with moist paper towels and were misted with water twice a day to maintain a high humidity. After 3 days at room temperature, seed potatoes were sliced in half and the area of macerated tissue was quantified using ImageJ.

All three strains reduced the severity of soft rot caused by Dd and Pcc (FIG. 4). Cohen 36 was the most effective strain on both Dd and Pcc: reducing the area of tissue maceration by 60% and 35%, respectively (FIG. 4B). Treating seed potatoes with WS-69 reduced the area of tissue maceration by 50% and 30% for Dd and Pcc, respectively (FIG. 4B). Finally, Cohen 9 was the least effective, but still able to reduce tissue maceration caused by Dd and Pcc by 25% and 20%, respectively (FIG. 4B).

FIG. 7 shows that three Dicty isolates control Dd and Pcc in seed tubers (at 25° C.). Two sets of data from different weeks were normalized to the Dickeya or Pectobacterium only bacterial control. The average area of macerated potato tissue measured in mm2 was set as “1” or “100%”. The average of all the other treatments including Dicty were divided by bacteria only control and multiplied by 100 to obtain a percentage. Each set contained 5 tubers per treatment.

Dicty should be capable of sporulating at temperatures as cold as 10° C. on a potato surface if they are applied as a one-time pre-planting or post-harvest treatment. Sporulation was assessed by inoculating small potato discs (5×6 mm) with 10 μL of Dd or Pcc suspensions at an OD600 of 3×10−5 and Dicty spores at a concentration of 1×107 spores/mL. Potato discs were kept in a covered 96-well plate for two weeks at 10° C. followed by visual inspection for son using a dissecting microscope. Representative images of a strain producing many sori (WS-517) and a strain producing few sori (WS-69) are shown in FIG. 5. Of the 11 strains evaluated, only Cohen 9 and WS-20 were unable to sporulate in the presence of both pathogens (Table 1).

TABLE 1
Assessment of Dicty sporulation at 10° C. on potato
in the presence of Dd or Pcc. A (✓) indicates sori
have been observed while a ( [Figure (not displayed)]  ) means they have not.
Dicty strainDdPcc
Cohen 9[Figure (not displayed)]
Cohen 36
WS-69
WS-517
WS-588
WS-606
WS-15
WS-20[Figure (not displayed)]
DC-7
DC-61
WS-116d

Example 2

This example describes the use of a high throughput screening assay to identify Dicty strains from Alaska (e.g., BAC10A, BAF6A, BAC3A, NW2, KB4A (ATCC® MYA-4262™) SO8B, SO3A, BAF9B, IC2A (ATCC® MYA-4259™), AK1A1 (ATCC® MYA-4272™) PBF4B (ATCC® MYA-4263), PBF8B, BSB1A, SO5B (ATCC® MYA-4249), PBF3C, PBF6B, NW2B, NW10B (ATCC® MYA-4271™), PBF9A, IC5A (ATCC® MYA-4256TH), ABC8A (ATCC® MYA-4260), NW16B, ABC10B, ABB6B (ATCC® MYA-4261), BA4A (ATCC® MYA-4252), AKK5A, AKK52C, HP4 (ATCC® MYA-4286), HP8 (ATCC® MYA-4284), or NW9A) that feed on Dd and Pcc at 10° C. on potatoes.

Results from 11 Dicty strains screened against Dd at 10° C. are presented in FIG. 6. Data was analyzed for significance using a one-way analysis of variance (ANOVA; alpha =0.05) with Tukey's honest significant difference (HSD) test to compare means between the treatments and the No Dicty control. A reduction in Dd proliferation when potato discs were treated with Dicty strains Cohen 9, Cohen 36, WS-15, Maryland 18a, BAF6A, NW2, and SO3A.

The Alaskan Dicty strains, and those identified in Example 1, are further tested against coinfections of Dd and Pcc. It is useful to identify Dicty strains that can suppress Dd and Pcc coinfections as these two pathogens have been isolated together from diseased potatoes (15). The ability of Dicty strains with different feeding preferences (Dd vs. Pcc) to complement each other when administered as a cotreatment is assayed.

Full text: Click here
Patent 2024
A-A-1 antibiotic Agar Amoeba Bacteria Biofilms Buffers Coinfection Cold Temperature Combined Modality Therapy Dickeya Dictyosteliida Enterobacteriaceae Extracellular Polymeric Substance Matrix Extracellular Polymeric Substances High-Throughput Screening Assays Human Body Humidity Microscopy neuro-oncological ventral antigen 2, human Nutrients Pathogenicity Pectobacterium Phenotype Plant Tubers polycarbonate potassium phosphate Scanning Electron Microscopy Solanum tuberosum Sporangia Spores Sterility, Reproductive Strains Technique, Dilution Tissue, Membrane Tissues Wounds

Example 17

Contaminating micro-organisms in cosmetics may cause a spoilage of the product and, when pathogenic, they represent a serious health risk for consumers worldwide. The United States Pharmacopoeia (USP) Microbial Limits Test provides several methods for the determination of total microbial count for bacteria, yeast and mold. Various gels of the present disclosure were tested to evaluate the possible microbial contamination in three different states of their use (intact, in-use, ending product). FIG. 96 is a table summarizing the results of such testing.

The samples of gel and water samples from carboys were analyzed for determination of CFU/mL (colony forming units per milliliter) of aerobic bacteria as well as yeast and mold. Samples were exposed to growth medium of Tryptic Soy Agar (TSA) for bacteria and Potato Dextrose Agar (PDA) for fungi (yeast/mold) at an exposure temperature of 23±3° C. Samples were incubated at 30.0±2° C. for 3 days (bacteria) and 5 days (Fungi). Samples were then observed for determination of colony-forming units/mL.

The limit of detection for the assays was 10 CFU/ml or g for bacteria and fungi, and the values of <10 indicate that microorganisms could not be detected in the samples. Values of >1.00E+04 indicate that the microbial colonies are Too Numerous to Count in the dilutions plated.

Full text: Click here
Patent 2024
Agar Bacteria Bacteria, Aerobic Biological Assay Culture Media Fungi Fungus, Filamentous Glucose Pathogenicity Solanum tuberosum Technique, Dilution Trypsin Yeasts
Not available on PMC !

Example 3

Unsorted, dried and particulated bakery residual was mixed with rheology modifiers, retrogradation preventing agents, preservatives and salt until obtaining a homogenous mixture, according to the composition shown in Table 3A. The mixture was placed in a mixing bowl in a warm water bath (˜90° C.), and water was added gradually under mixing conditions for at least 10 minutes, until the temperature of the composition reached about 60° C. The playdough was then kneaded for at least 5 minutes, and then left to cool to room temperature, covered. Representative pictures of the playdough on this Example are shown in FIGS. 5A-5B. The rheological properties for Compositions 4-8 are shown in FIGS. 6A-6E, respectively, and Table 3B.

TABLE 3A
Compositions of Example 3
Concentration wt %
ComponentComp. 4Comp. 5Comp. 6Comp. 7Comp. 8
Unsorted bakery34.134.736.034.235.4
residual
Water (total)38.739.540.938.940.2
GMS4.34.44.64.44.5
Gluten3.05.0
Vegetable oil1.41.51.51.51.5
Potato starch3.61.21.21.21.2
Methylparaben0.20.20.20.20.2
Sodium chloride14.714.915.514.712.0
Borax0.5
Amylopectin5.05.0
* Glyceryl monostearate, 40% pre-melted

TABLE 3B
Rheological test results
Complex viscosity [log(Pa · sec)]
Composition0.1 Hz1 Hz10 Hz
45.514.683.81
55.574.73.85
65.414.633.77
75.444.63.66
85.454.63.74
Reference4.73.853.06

As can be seen, while the complex viscosity of Compositions 4-8 is somewhat higher than, the compositions showed pseudoplastic behavior similar to those of the Reference commercial product, with very similar sensorial properties compared to the Reference commercial product.

Full text: Click here
Patent 2024
Amylopectin Bath borax Chlorides COMP protocol Figs Gluten glyceryl monostearate Homozygote methylparaben methylparaben, sodium salt Pharmaceutical Preservatives Sodium Chloride Solanum tuberosum Starch Vegetable Oils Viscosity Vision
Not available on PMC !

Example 1

The efficacy of treatment for killing nematode species has been examined, since nematodes are a key detrimental factor for many commonly-grown crops, such as, but not limited to, citrus trees, bananas, barley, beans, lettuce, potatoes, melons, strawberries and tomatoes.

Initial experiments, as shown in Table 1, have indicated current and voltage levels needed to reliably kill nematodes.

Soil moisture and soil temperature were measured before and after the treatments to maximize the efficiency of the disinfection process. Soil preparation was the same for the five experiments.

It can be seen that, to kill nematodes, at least 1000 V is needed at a current above about 4.6 A. The optimum exposure time is 4 separate exposures, each of about 10 s.

TABLE 1
Effectiveness of different currents, voltages and exposure
times on killing nematodes in soil
ResultsTreatment
DisinfectionCurrentExposureVoltage
EffectivenessEffect(A)Time (s)(V)No.
 5%No effect0.18152201
23%Some0.23152202
disinfection.
Not uniform
76%Good2.854 × 1010003
disinfection.
Not uniform
84%Good4.62 × 2010004
disinfection.
96%Excellent7.644 × 1010005
disinfection.

Full text: Click here
Patent 2024
A-factor (Streptomyces) Agricultural Crops Banana Citrus Disinfection Electricity factor A Hordeum Lactuca sativa Lycopersicon esculentum Melons Nematoda Solanum tuberosum Strawberries Trees Vision
T. reesei RUT-C30 (ATCC 56765) was purchased from ATCC (Manassas, VA) and T. atroviride Ta13 (MUT 6701) was isolated from
wheat seeds (Algeria) and deposited at the Mycotheca Universitatis
Taurinensis (MUT, Turin, Italy).
2,6-Dimethoxyphenol, 3,5-dinitrosalicylic
acid, 4-nitrophenyl butyrate, acetonitrile, bovine serum albumin,
carboxymethyl cellulose, citrate solution, citric acid, formic acid,
malic acid, methanol, Na acetate buffer, Na phosphate buffer, Na phosphate–citrate,
potato dextrose agar, trichloroacetic acid, Tris-HCl buffer, and Triton
X-100 were purchased from Merck (Darmstadt, Germany).
Full text: Click here
Publication 2023
4-nitrophenyl butyrate Acetate acetonitrile Agar Buffers Carboxymethylcellulose Citrate Citric Acid formic acid Glucose malic acid Methanol Phosphates Plant Embryos Serum Albumin, Bovine Solanum tuberosum Trichloroacetic Acid Tromethamine

Top products related to «Solanum tuberosum»

Sourced in Germany, United States, France, Italy, Australia, United Kingdom, Spain, Poland, Thailand, India, Sao Tome and Principe, Mexico
PDA is a handheld device designed for use in laboratory environments. It serves as a personal data assistant, providing users with the ability to record and store data electronically. The core function of the PDA is to facilitate the efficient management and organization of information related to laboratory procedures and experiments.
Sourced in United States, France, Germany, Mexico, United Kingdom
The PDA is a versatile laboratory equipment designed for various applications. It serves as a personal digital assistant, providing users with a compact and portable platform for data collection, analysis, and management. The core function of the PDA is to facilitate efficient data handling and processing within the laboratory environment.
Sourced in United Kingdom, United States, Italy, Spain, Germany, Canada, Australia
The PDA (Photodiode Array) is a lab equipment product offered by Thermo Fisher Scientific. It is a device that uses an array of photodiodes to detect and measure the intensity of light over a range of wavelengths. The core function of the PDA is to provide high-speed, sensitive, and accurate optical detection for various analytical applications.
Sourced in India, United Kingdom, Germany
Potato dextrose agar is a microbiological culture medium commonly used for the growth and isolation of fungi. It provides nutrients and a suitable environment for the cultivation of fungal species.
Sourced in Germany, United States, United Kingdom, Canada, China, Spain, Netherlands, Japan, France, Italy, Switzerland, Australia, Sweden, Portugal, India
The DNeasy Plant Mini Kit is a lab equipment product designed for the isolation and purification of DNA from plant samples. It utilizes a silica-based membrane technology to extract and concentrate DNA effectively from a variety of plant materials.
Sourced in United States, Japan, Germany
Potato dextrose broth is a culture medium used for the growth and detection of fungi. It provides the necessary nutrients and conditions for the cultivation of a variety of fungal species.
Sourced in United States, Germany, Poland, Canada
Potato starch is a fine, white, powdery substance derived from the starch-containing cells of potato tubers. It serves as a thickening agent and provides texture in various food and non-food applications.
Sourced in India, Germany, United States
Potato dextrose broth is a culture medium used for the growth and isolation of various fungi, particularly yeasts and molds. It provides the necessary nutrients and conditions for the cultivation of these microorganisms.
Sourced in United States, Germany
Potato dextrose broth is a general-purpose microbiological growth medium used for the cultivation of a wide range of fungi and yeasts. It provides essential nutrients and a suitable environment for the growth of these organisms.
Sourced in Germany, United States, Italy, India, United Kingdom, China, France, Poland, Spain, Switzerland, Australia, Canada, Sao Tome and Principe, Brazil, Ireland, Japan, Belgium, Portugal, Singapore, Macao, Malaysia, Czechia, Mexico, Indonesia, Chile, Denmark, Sweden, Bulgaria, Netherlands, Finland, Hungary, Austria, Israel, Norway, Egypt, Argentina, Greece, Kenya, Thailand, Pakistan
Methanol is a clear, colorless, and flammable liquid that is widely used in various industrial and laboratory applications. It serves as a solvent, fuel, and chemical intermediate. Methanol has a simple chemical formula of CH3OH and a boiling point of 64.7°C. It is a versatile compound that is widely used in the production of other chemicals, as well as in the fuel industry.

More about "Solanum tuberosum"

Solanum tuberosum, commonly known as the potato, is a widely cultivated starchy tuber crop that belongs to the nightshade family Solanaceae.
This perennial plant is often grown as an annual and is a major food source, rich in carbohydrates, vitamins, and minerals.
Potatoes have a variety of culinary and industrial applications.
Researchers can leverage PubCompare.ai to optimize their potato studies, locating the most relevant protocols from literature, preprints, and patents, while receiving accurate comparisons to identify the best methods and products.
This AI-driven platform enhances reproducibility and accuracy in potato research.
Potato dextrose agar (PDA) is a commonly used growth medium for culturing fungi, including those associated with potato plants.
The DNeasy Plant Mini Kit is a tool for extracting high-quality genomic DNA from potato samples, enabling genetic analysis.
Potato dextrose broth is another culture medium used for microbial growth, while potato starch is a valuable industrial product derived from the tubers.
Methaol is a solvent that can be used in various potato-related experiments, such as extraction of compounds or pretreatment of samples.
Leveraging these tools and resources, researchers can optimize their investigations of the versatile and important Solanum tuberosum plant.