Presence/absence scores for each tag were used in a binomial test of segregation versus an independent framework map. For maize, this framework map consisted of 644 SNPs genetically mapped in the maize nested association mapping (NAM) population [29] (link) and then genotyped in the IBM population. The binomial segregation test filtered for sequence tags that co-segregated with only one of the two parental alleles at a given SNP. For each SNP marker, the two possible parental sources of a tag were each tested in turn. A “success” was recorded when a tag co-occurred in a RIL with the SNP allele from its presumed parental source, otherwise a “failure” was recorded. The binomial sample size was the number of RILs in which the tag was present and the SNP was not missing or heterozygous. For maize, tests were only performed if the sample size was at least 10. The probability of success was defined as the proportion of the RILs that contained the SNP allele being tested. For maize, a threshold p-value of 0.001 was considered significant for directed tests versus the physically closest SNP, or 0.0001 for elsewhere in the genome.
For barley, mapping was conducted using flanking SNPs and a threshold of p<0.0001 for the binomial test. In practice, a sequence tag was mapped in barley only if it always co-occurred with one SNP allele and never the other.
In maize only, biallelic GBS markers were identified as follows. Pairs of tags that aligned to exactly the same unique position and strand in the maize reference genome (B73 RefGen v1) and that also co-segregated with the physically closest SNP (p<0.001) were merged into a single, biallelic marker. These markers were then re-tested for co-segregation with the physically closest SNP using Fisher's Exact Test (p<0.001). Biallelic GBS markers that passed the latter test were then incorporated into a high density, framework map and ordered according to their positions in the reference genome. To determine how many of the remaining presence/absence GBS tags could be genetically mapped in maize, the binomial test of segregation was repeated versus this high density framework map, with a threshold of p<0.0001.
Software for the sequence filtering and the mapping analysis was written in Java and is available on SourceForge (http://sourceforge.net/projects/tassel/ ). This software is part of the TASSEL package but is not currently implemented in the TASSEL GUI.
For barley, mapping was conducted using flanking SNPs and a threshold of p<0.0001 for the binomial test. In practice, a sequence tag was mapped in barley only if it always co-occurred with one SNP allele and never the other.
In maize only, biallelic GBS markers were identified as follows. Pairs of tags that aligned to exactly the same unique position and strand in the maize reference genome (B73 RefGen v1) and that also co-segregated with the physically closest SNP (p<0.001) were merged into a single, biallelic marker. These markers were then re-tested for co-segregation with the physically closest SNP using Fisher's Exact Test (p<0.001). Biallelic GBS markers that passed the latter test were then incorporated into a high density, framework map and ordered according to their positions in the reference genome. To determine how many of the remaining presence/absence GBS tags could be genetically mapped in maize, the binomial test of segregation was repeated versus this high density framework map, with a threshold of p<0.0001.
Software for the sequence filtering and the mapping analysis was written in Java and is available on SourceForge (
Full text: Click here