Regional Centers were selected in a competitive process in which universities and other research institutions were invited to submit proposals for covered areas and population, recruitment methods, organization structures, regional liaison, and the resources. Each Regional Center consists of one or more study areas. The population of the selected study areas is 130,000 to 600,000. Assuming birth rate of the study areas to be 1%, each Regional Center will see 1,300 to 6,000 annual births, 4,400 on average. JECS aims half of all the births in the area to be covered. Selected Regional Centers are required to recruit 3,000 to 9,000 pregnant women in three years, totaling to 100,000 participants in 15 Regional Centers (Figure
Japanese
The Japanese language is a Japonic language that is unrelated to the Sino-Tibetan, Altaic, or any other language famly.
The Japanese people have a rich cultural hertage, including unique traditions, cuisine, and art forms.
Most cited protocols related to «Japanese»
Regional Centers were selected in a competitive process in which universities and other research institutions were invited to submit proposals for covered areas and population, recruitment methods, organization structures, regional liaison, and the resources. Each Regional Center consists of one or more study areas. The population of the selected study areas is 130,000 to 600,000. Assuming birth rate of the study areas to be 1%, each Regional Center will see 1,300 to 6,000 annual births, 4,400 on average. JECS aims half of all the births in the area to be covered. Selected Regional Centers are required to recruit 3,000 to 9,000 pregnant women in three years, totaling to 100,000 participants in 15 Regional Centers (Figure
The NHO was established in 2004 to take over the management of the national hospitals. As of October 2014, there were 143 hospitals nationwide run by the NHO, including both general acute-care hospitals and specialized long-term-care hospitals. Fifty-four hospitals from 35 prefectures had implemented the DPC-based payment system, and the mean number of acute-care beds in these 54 hospitals was 410 (range, 135–730). All NHO hospitals provide administrative claims data to the Medical Information Analysis (MIA) databank, which is managed by the Clinical Research Center at NHO Headquarters. In NHO hospitals with implementation of the DPC-based payment system, the DPC data are also stored in the MIA databank. In addition, the NHO preliminarily introduced the SS-MIX standardized storage23 (link) to its hospitals in 2013. The SS-MIX storage enables medical chart information from different vendors, including daily laboratory data, to be recorded in a standardized manner. In the SS-MIX storage, laboratory data are specified using JLAC-10 codes. The flow of data is shown in
Flow of data in the National Hospital Organization. DPC, Diagnosis Procedure Combination; MIA, Medical Information Analysis; NHO, National Hospital Organization; SS-MIX, Standardized Structured Medical Record Information Exchange.
To develop the food list for the short-FFQ, we selected and combined items and supporting questions from the original long-FFQ. We selected the three major foods and beverages that contributed to inter-individual variation for each of 40 nutrients according to a cumulative R2 for the 40 nutrients,16 based on the multiple regression coefficient with total intake of a specific nutrient as the dependent variable and its intake from each food as the explanatory variable. Inter-individual variation was calculated by gender among 45 869 men and 52 989 women who responded to the JPHC Study 10-year follow-up survey. Consequently, cumulative R2 for the nutrients ranged from 0.4 to 1.0. For potential inter-individual variation in intake of specific food groups, some foods, such as coffee, were added. Ultimately, 66 food and beverage items were selected for the short-FFQ. In this validation study, information on alcoholic beverages was substituted with those from the long-FFQ (united with overall information of lifestyle), because these questions were not included in the short-FFQ. This was because information on alcoholic beverage intake was structured in pages for lifestyle other than diet, such as smoking status and physical activity, and the reproducibility of alcoholic beverage intake was relatively high even if questionnaires were administered at a 1-year interval.17 (link),18 (link)Intakes of energy, 53 nutrients, and 29 food groups were calculated using the Standard Tables of Food Composition in Japan 2010,19 Standard Tables of Food Composition in Japan Fifth Revised and Enlarged Edition 2005 For Fatty Acids,20 and a specifically developed food composition table for isoflavones in Japanese foods.21 (link)
Most recents protocols related to «Japanese»
Example 1
In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).
After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.
After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 25° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).
Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.
In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).
Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).
To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles. The produced hydrotalcite particles were subjected to an elemental analysis, resulting in that Mg/Al (molar ratio)=2.1.
In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2003-048712, hydrotalcite particles were synthesized.
In 150 g/L of NaOH solution in an amount of 3 L were dissolved 90 g of metal aluminum to give a solution. After 399 g of MgO were added to the solution, 174 g of Na2CO3 were added thereto and they were reacted with each other for 6 hours with stirring at 95° C. As a result, hydrotalcite particles slurry was synthesized.
To the hydrotalcite particles slurry were added 30 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After the hydrotalcite particles slurry of which particles were surface treated was cooled, filtered and washed to give solid matters, a drying treatment was performed on the solid matters at 100° C. to give solid products of hydrotalcite particles.
Example 2
In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).
After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.
After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).
Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.
In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).
Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).
To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.
Solid products of hydrotalcite particles were produced in a same manner as in Comparative Example 1 except that reaction conditions of 95° C. and 6 hours for synthesis of the hydrotalcite particles slurry in Comparative Example 1 were changed to hydrothermal reaction conditions of 170° C. and 6 hours.
Example 3
In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).
After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.
After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 60° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).
Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.
In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).
Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).
To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.
In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2013-103854, hydrotalcite particles were synthesized.
Into a 5 L container were added 447.3 g of magnesium hydroxide (d50=4.0 μm) and 299.2 g of aluminum hydroxide (d50=8.0 μm), and water was added thereto to achieve a total amount of 3 L. They were stirred for 10 minutes to prepare slurry. The slurry had physical properties of d50=10 μm and d90=75 μm. Then, the slurry was subjected to wet grinding for 18 minutes (residence time) by using Dinomill MULTILAB (wet grinding apparatus) with controlling a slurry temperature during grinding by using a cooling unit so as not to exceed 40° C. As a result, ground slurry had physical properties of d50=1.0 μm, d90=3.5 μm, and slurry viscosity=5000 cP. Then, sodium hydrogen carbonate was added to 2 L of the ground slurry such that an amount of the sodium hydrogen carbonate was ½ mole with respect to 1 mole of the magnesium hydroxide. Water was added thereto to achieve a total amount of 8 L, and they were stirred for 10 minutes to give slurry. Into an autoclave was put 3 L of the slurry, and a hydrothermal reaction was caused at 170° C. for 2 hours. As a result, hydrotalcite particles slurry was synthesized.
To the hydrotalcite particles slum were added 6.8 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After solids were filtered by filtration, the filtrated cake was washed with 9 L of ion exchange water at 35° C. The filtrated cake was further washed with 100 mL of ion exchange water, and a conductance of water used for washing was measured. As a result, the conductance of this water was 50 μS/sm (25° C.). The water-washed cake was dried at 100° C. for 24 hours and was ground to give solid products of hydrotalcite particles.
Example 5
In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).
After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.
After 192 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 1.6 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).
Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.
In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).
Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).
To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.
In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. H06-136179, hydrotalcite particles were synthesized.
To 1 L of water were added 39.17 g of sodium hydroxide and 11.16 g of sodium carbonate with stirring, and they were heated to 40° C. Then, to 500 mL of distilled water were added 61.28 g of magnesium chloride (19.7% as MgO), 37.33 g of aluminum chloride (20.5% as Al2O3), and 2.84 g of ammonium chloride (31.5% as NH3) such that a molar ratio of Mg to Al, Mg/Al, was 2.0 and a molar ratio of NH3 to Al, NH3/Al, was 0.35. As a result, an aqueous solution A was prepared. The aqueous solution A was gradually poured into a reaction system of the sodium hydroxide and the sodium carbonate. The reaction system after pouring had pH of 10.2. Moreover, a reaction of the reaction system was caused at 90° C. for about 20 hours with stirring to give hydrotalcite particles slurry.
To the hydrotalcite particles slurry were added 1.1 g of stearic acid, and a surface treatment was performed on particles with stirring to give a reacted suspension. The reacted suspension was subjected to filtration and water washing, and then the reacted suspension was subjected to drying at 70° C. The dried suspension was ground by a compact sample mill to give solid products of hydrotalcite particles.
Example 1
Compound (3A) was obtained with reference to the method for producing compound (ii-2) described in WO2014/126064.
CF3 CF2—OCF2 CF2—(OCF2 CF2 CF2 CF2 OCF2 CF2)n—OCF2 CF2 CF2—C(O)NH—CH2 CH2 CH2—Si(OCH3)3 (3A)
Average of number n of units: 13, number average molecular weight of compound (3A): 4,920
Example 4
Compound (1-1C) was obtained in accordance with the method described in Preparation Example 15 of Japanese Patent No. 5761305.
CF3(OCF2 CF2)15(OCF2)16 OCF2 CH2 OCH2 CH2 CH2 Si[CH2 CH2 CH2 Si(OCH3)3]3 (1-1C)
Mn of compound (1-1C): 3,600
Example 8
In accordance with Example 4 in JP-A-2015 —199906, compound (1-3B) was obtained.
In the above formula (1-3B), p1:q≈47:53, p1+q1=43.
Mn of compound (1-3B): 4,800
Example 8
The composition of the tested substance at each concentration is shown below.
The concentration may be diluted using a base agent consisting of the following components.
For example, commercially available components that are in compliance with the Japanese Pharmacopoeia or equivalent thereof can be used as each component other than the active ingredient.
Example 5
The human skin squamous carcinoma line (HSC) (Japanese Collection of Research Bioresources Cell Bank (JCRB)) was cultured in Dulbecco's minimal essential media (DMEM) containing 20% fetal bovine serum (FBS), (Thermofisher, Waltham, MA). Cells were plated at a density of 5,000 cells per well into a 96-well plate and allowed to attach for 24 h in a 37° C. humidified incubator with a 5% CO2 atmosphere. Media was replaced with that containing test agents or vehicle (0.1% dimethylsulphoxide) in 1% FBS and cells incubated for a further 72 h. Cell viability was assessed using CellTiter-Glo® (Promega). Non-linear regression analysis was performed using GraphPad PRISM®.
Patients’ MRI data was used in an opt-out method, after their personal information was anonymized in a linkable manner. Among 44 patients suspected with NPH, 5 patients diagnosed with secondary NPH [29 (link)] that developed after subarachnoid hemorrhage [3 (link)], intracerebral hemorrhage [1 (link)], and severe meningitis [1 (link)], and 3 patients diagnosed with congenital/developmental etiology NPH [30 (link)] were excluded from this study. Finally, 36 patients diagnosed with iNPH who had radiological findings of disproportionately enlarged subarachnoid space hydrocephalus (DESH) [31 (link)], specifically ventricular dilatation, enlarged Sylvian fissure, and narrow sulci at the high convexity, and triad symptoms of gait disturbance, cognitive impairment, and/or urinary incontinence were included in this study, according to the Japanese guidelines for management of iNPH [32 (link)]. Of them, 18 patients (50%) underwent CSF removal in 30–35 ml via a lumbar tap and were evaluated for changes in their symptoms before, one day and two days after the CSF tap test. In addition, 21 patients (86%) underwent CSF shunt surgery and their symptoms improved by ≥ 1 point on the modified Rankin Scale and/or the Japanese iNPH grading scale [32 (link)].
Top products related to «Japanese»
More about "Japanese"
They have a rich cultural heritage, including unique traditions, cuisine, and art forms.
The Japanese language is a Japonic language that is unrelated to the Sino-Tibetan, Altaic, or any other language family.
In the field of cell culture and biotechnology, the Japanese people have made significant contributions.
Common cell culture media used in Japanese research include DMEM (Dulbeco's Modified Eagle's Medium), RPMI 1640 medium, and supplements such as Penicillin/Streptomycin.
These media provide the necessary nutrients and antibiotics to support the growth and survival of various cell types.
Researchers in Japan have also utilized these cell culture techniques to advance our understanding of Japanese-specific diseases and conditions.
For example, the RPMI-1640 medium has been widely used in studies involving Japanese-derived cell lines and primary cells.
Optimizing research protocols is crucial for Japanese researchers, and tools like PubCompare.ai can help streamline the process.
This AI-driven platform allows researchers to seamlessly locate protocols from literature, pre-prints, and patents, and utilize AI-driven comparisons to identify the best protocols and products for their specific needs.
By leveraging the rich cultural heritage and scientific advancements of the Japanese people, researchers can continue to push the boundaries of knowledge and uncover valuable insights that benefit the global community.