Transients
They are characterized by their short duration and rapid changes, often occurring in response to external stimuli or system perturbations.
Transients can be observed in electrical circuits, mechanical systems, biological processes, and other complex systems.
Understanding and analyzing transients is crucial for optimizing system performance, ensuring safety, and advancing scientific discoveries.
PubCompare.ai's AI-driven Transient Comparison Platform empowers researchers to effortlessly locate and compare protocols from literature, pre-prints, and patents, enabling the identification of the best approaches to enhance reproducibility and drive scientific breakthroughs.
With intelligent, data-driven comparisons, users can elevate their research and make seamless transient comparisons to propel their discoveries forward.
Most cited protocols related to «Transients»
To measure repair using the inducible I-SceI protein (TST) in combination with siRNA-mediated inhibition of CtIP, HEK293 cell lines with each of the reporters and stable expression of TST were first plated on 24 well plates at 105 cells/well. The following day, the wells were transfected with 70nM siRNA duplex mixed with 4ul/ml of Lipofectamine 2000 in Optimem (Invitrogen). After 4.5h, transfection complexes were diluted two-fold with media without antibiotics, and 48h after the initiation of transfection, 4OHT was added at 3 µM for 24h. Three days after 4OHT was added, the percentage of GFP+ cells was analyzed by FACS as described above. Knockdown of CtIP levels using the various siRNAs was confirmed by RT-PCR from RNA samples isolated from parallel transfections at the time of 4OHT addition (data not shown). Amplification product was quantified at the threshold cycle by including SYBR green in the PCR reaction and using an iQ5 cycler for real-time analysis at the end of each cycle (BioRad). Products were normalized relative to a primer set directed against actin. Sequences of the siRNAs siCtIP-p (Santa Cruz Biotechnology), and siCtIP-1 [25] (link), and primers for RT-PCR are shown in
Repair frequencies are the mean of at least three transfections or four 4OHT treatments, and error bars represent the standard deviation from the mean. For some experiments, repair frequencies are shown relative to samples co-transfected with I-SceI and an empty vector (EV). For this calculation, the percentage of GFP+ cells from each sample was divided by the mean value of the EV samples treated in the parallel experiment. Similarly, to calculate the fold-difference in repair between siRNA-treated and control-siRNA treated cells, the percentage of GFP+ cells from each sample was divided by the mean value of control-siRNA samples from the parallel experiment. Statistical analysis was performed using the unpaired t-test.
Most recents protocols related to «Transients»
Example 1
The sequence coding for the light chain variable region of the antibody was inserted into vector pFUSE2ss-CLIg-hK (Invivogen, Catalog Number: pfuse2ss-hclk) using EcoRI and BsiWI restriction sites to construct a light chain expression vector. The sequence coding for the heavy chain variable region of the antibody was inserted into vector pFUSEss-CHIg-hG2 (Invivogen, Catalog Number: pfusess-hchg2) or vector pFUSEss-CHIg-hG4 (Invivogen, Catalog Number: pfusess-hchg4) using EcoRI and NheI restriction sites to construct a heavy chain expression vector.
The culture and transfection of Expi293 cells were performed in accordance with the handbook of Expi293™ Expression System Kit from Invitrogen (Catalog Number: A14635). The density of the cells was adjusted to 2×106 cells/ml for transfection, and 0.6 μg of the light chain expression vector as described above and 0.4 μg of the heavy chain expression vector as described above were added to each ml of cell culture, and the supernatant of the culture was collected four days later.
The culture supernatant was subjected to non-reduced SDS-PAGE gel electrophoresis in accordance with the protocol described in Appendix 8, the Third edition of the “Molecular Cloning: A Laboratory Manual”.
Pictures were taken with a gel scanning imaging system from BEIJING JUNYI Electrophoresis Co., LTD and in-gel quantification was performed using Gel-PRO ANALYZER software to determine the expression levels of the antibodies after transient transfection. Results were expressed relative to the expression level of control antibody 1 (control antibody 1 was constructed according to U.S. Pat. No. 7,186,809, which comprises a light chain variable region as set forth in SEQ ID NO: 10 of U.S. Pat. No. 7,186,809 and a heavy chain variable region as set forth in SEQ ID NO: 12 of U.S. Pat. No. 7,186,809, the same below) (control antibody 2 was constructed according to U.S. Pat. No. 7,638,606, which comprises a light chain variable region as set forth in SEQ ID NO: 6 of U.S. Pat. No. 7,638,606 and a variable region as set forth in SEQ ID NO: 42 of U.S. Pat. No. 7,638,606, the same below). See Tables 2a-2c below for the results.
Example 4
6-8 week-old SPF Balb/c mice were selected and injected subcutaneously with antibodies (the antibodies of the present invention or control antibody 2) in a dose of 5 mg/kg (weight of the mouse). Blood samples were collected at the time points before administration (0 h) and at 2, 8, 24, 48, 72, 120, 168, 216, 264, 336 h after administration. For blood sampling, the animals were anesthetized by inhaling isoflurane, blood samples were taken from the orbital venous plexus, and the sampling volume for each animal was about 0.1 ml; 336 h after administration, the animals were anesthetized by inhaling isoflurane and then euthanized after taking blood in the inferior vena cava.
No anticoagulant was added to the blood samples, and serum was isolated from each sample by centrifugation at 1500 g for 10 min at room temperature within 2 h after blood sampling. The collected supernatants were immediately transferred to new labeled centrifuge tubes and then stored at −70° C. for temporary storage. The concentrations of the antibodies in the mice were determined by ELISA:
1. Preparation of Reagents
sIL-4Rα (PEPRO TECH, Catalog Number: 200-04R) solution: sIL-4Rα was taken and 1 ml ddH2O was added therein, mixed up and down, and then a solution of 100 μg/ml was obtained. The solution was stored in a refrigerator at −20° C. after being subpacked.
Sample to be tested: 1 μl of serum collected at different time points was added to 999 μl of PBS containing 1% BSA to prepare a serum sample to be tested of 1:1000 dilution.
Standard sample: The antibody to be tested was diluted to 0.1 μg/ml with PBS containing 1% BSA and 0.1% normal animal serum (Beyotime, Catalog Number: ST023). Afterwards, 200, 400, 600, 800, 900, 950, 990 and 1000 μl of PBS containing 1% BSA and 0.1% normal animal serum were respectively added to 800, 600, 400, 200, 100, 50, 10 and 0 μl of 0.1 μg/ml antibodies to be tested, and thus standard samples of the antibodies of the present invention were prepared with a final concentration of 80, 60, 40, 20, 10, 5, 1, or 0 ng/ml respectively.
2. Detection by ELISA
250 μl of 100 μg/ml sIL-4Rα solution was added to 9.75 ml of PBS, mixed up and down, and then an antigen coating buffer of 2.5 μg/ml was obtained. The prepared antigen coating buffer was added to a 96-well ELISA plate (Corning) with a volume of 100 μl per well. The 96-well ELISA plate was incubated overnight in a refrigerator at 4° C. after being wrapped with preservative film (or covered). On the next day, the 96-well ELISA plate was taken out and the solution therein was discarded, and PBS containing 2% BSA was added thereto with a volume of 300 μl per well. The 96-well ELISA plate was incubated for 2 hours in a refrigerator at 4° C. after being wrapped with preservative film (or covered). Then the 96-well ELISA plate was taken out and the solution therein was discarded, and the plate was washed 3 times with PBST. The diluted standard antibodies and the sera to be detected were sequentially added to the corresponding wells, and three duplicate wells were made for each sample with a volume of 100 μl per well. The ELISA plate was wrapped with preservative film (or covered) and incubated for 1 h at room temperature. Subsequently, the solution in the 96-well ELISA plate was discarded and then the plate was washed with PBST for 3 times. Later, TMB solution (Solarbio, Catalog Number: PR1200) was added to the 96-well ELISA plate row by row with a volume of 100 μl per well. The 96-well ELISA plate was placed at room temperature for 5 minutes, and 2 M H2SO4 solution was added in immediately to terminate the reaction. The 96-well ELISA plate was then placed in flexstation 3 (Molecular Devices), the values of OD450 were read, the data were collected and the results were calculated with Winnonlin software. The pharmacokinetic results were shown in
Example 5
A series of pharmacokinetic experiments were carried out in Macaca fascicularises to further screen antibodies.
3-5 year-old Macaca fascicularises each weighting 2-5 Kg were selected and injected subcutaneously with antibodies (the antibodies of the present invention or control antibody 2) in a dose of 5 mg/kg (weight of the Macaca fascicularis). The antibody or control antibody 2 to be administered was accurately extracted with a disposable aseptic injector, and multi-point injections were made subcutaneously on the inner side of the thigh of the animal, and the injection volume per point was not more than 2 ml. Whole blood samples were collected from the subcutaneous vein of the hind limb of the animal at the time points before administration (0 h) and at 0.5, 2, 4, 8, 24, 48, 72, 120, 168, 240, 336 h, 432 h, 504 h, 600 h, 672 h after administration. The blood volume collected from each animal was about 0.1 ml each time.
No anticoagulant was added to the blood samples, and serum was isolated from each sample by centrifugation at 1500 g for 10 min at room temperature within 2 h after blood sampling. The collected supernatants were immediately transferred to new labeled centrifuge tubes and then stored at −70° C. for temporary storage. The concentrations of the antibodies in the Macaca fascicularises were determined according the method as described in Example 4. The pharmacokinetic results are shown in
Example 10
In vivo pharmacokinetics of the antibodies of the invention are further detected and compared in this Example, in order to investigate the possible effects of specific amino acids at specific positions on the pharmacokinetics of the antibodies in animals. The specific experimental method was the same as that described in Example 4, and the results are shown in Table 9 below.
From the specific sequence, the amino acid at position 103 in the sequence of the heavy chain H1031 (SEQ ID NO. 91) of the antibody (in CDR3) is Asp (103Asp), and the amino acid at position 104 is Tyr (104Tyr). Compared with antibodies that have no 103Asp and 104Tyr in heavy chain, the present antibodies which have 103Asp and 104Tyr have a 2- to 4-fold higher area under the drug-time curve and an about 70% reduced clearance rate.
The expression levels of the antibodies of the present invention are also detected and compared, in order to investigate the possible effects of specific amino acids at specific positions on the expression of the antibodies. Culture and transfection of Expi293 cells were conducted according to Example 1, and the collected culture supernatant was then passed through a 0.22 μm filter and then purified by GE MabSelect Sure (Catalog Number: 11003494) Protein A affinity chromatography column in the purification system GE AKTA purifier 10. The purified antibody was collected and concentrated using Amicon ultrafiltration concentrating tube (Catalog Number: UFC903096) and then quantified. The quantitative results are shown in Table 10 below.
From the specific sequence, the amino acid at position 31 in the sequence of the light chain L1012 (SEQ ID NO. 44), L1020 (SEQ ID NO. 55) or L1023 (SEQ ID NO. 51) of the antibody (in CDR1) is Ser (31Ser). Compared with antibodies that have no 31Ser in light chain, the present antibodies which have 31Ser have a 2- to 5-fold higher expression level.
The above description for the embodiments of the present invention is not intended to limit the present invention, and those skilled in the art can make various changes and variations according to the present invention, which are within the protection scope of the claims of the present invention without departing from the spirit of the same.
Example 7
The development of fully human monoclonal antibodies directed against human IL-17RA was carried out using Abgenix (now Amgen Fremont Inc.) XenoMouse® technology (U.S. Pat. Nos. 6,114,598; 6,162,963; 6,833,268; 7,049,426; 7,064,244, which are incorporated herein by reference in their entirety; Green et al, 1994, Nature Genetics 7:13-21; Mendez et al., 1997, Nature Genetics 15:146-156; Green and Jakobovitis, 1998, J. Ex. Med. 188:483-495)). TABLE 4 shows the portions of the IL-17RA protein used as an immunogen and cell lines used to generate and screen anti-IL-17RA antibodies.
IgG2 XenoMouse® mice were immunized/boosted with IL-17RA-Fc (group 1) and IL-17RA-FLAG-polyHis (group 2). Serum titers were monitored by ELISA and mice with the best titers were fused to generate hybridomas. The resulting polyclonal supernatants were screened for binding to IL-17RA by ELISA, and the positive supernatants were screened for binding to IL-17RA CHO cells by FMAT. Positive supernatants were subjected to additional screening. IgG2 XenoMouse® mice were immunized with the following immunogens: IL-17RA-Fc (group 3) and IL-17RA-FLAG-pHis (group 4) and were tested following additional immunizations.
Example 6
The Effect of ARTS Mimetic Small Molecule A4 on Premalignant Cells
Acini-like organoids forms hollow lumen after 10 to 12 days in 3D culture system and remain hollow thereafter (Muthuswamy et al., 2001). Plasmids introduced by transient cell transfection are only expressed for a limited period of time, as they are not integrated into the genome and therefore may be lost by environmental factors and cell division. Therefore, the inventors next examined whether introduction of small-molecules may mimic ARTS function, specifically in inducing lumen formation and reversion of pre-malignant cells to a normal-like phenotype. The inventors thus tested initially the effect of the ARTS mimetic small molecule A4 on induction of apoptosis in 2D culture.
As shown in
Example 5
To deliver the albumin-specific ZFNs to the liver in vivo, the normal site of albumin production, we generated a hepatotropic adeno-associated virus vector, serotype 8 expressing the albumin-specific ZFNs from a liver-specific enhancer and promoter (Shen et al., ibid and Miao et al., ibid). Adult C57BL/6 mice were subjected to genome editing at the albumin gene as follows: adult mice were treated by i.v. (intravenous) injection with 1×1011 v.g. (viral genomes)/mouse of either ZFN pair 1 (SBS 30724 and SBS 30725), or ZFN pair 2 (SBS 30872 and SBS 30873) and sacrificed seven days later. The region of the albumin gene encompassing the target site for pair 1 was amplified by PCR for the Cel-I mismatch assay using the following 2 PCR primers:
The region of the albumin gene encompassing the target site for pair 2 was amplified by PCR for the Cel-I assay using these PCR primers:
As shown in
The mouse albumin specific ZFNs SBS30724 and SBS30725 which target a sequence in intron 1 were also tested in a second study. Genes for expressing the ZFNs were introduced into an AAV2/8 vector as described previously (Li et al. (2011) Nature 475 (7355): 217). To facilitate AAV production in the baculovirus system, a baculovirus containing a chimeric serotype 8.2 capsid gene was used. Serotype 8.2 capsid differs from serotype 8 capsid in that the phopholipase A2 domain in capsid protein VP1 of AAV8 has been replaced by the comparable domain from the AAV2 capsid creating a chimeric capsid. Production of the ZFN containing virus particles was done either by preparation using a HEK293 system or a baculovirus system using standard methods in the art (See Li et al., ibid, see e.g., U.S. Pat. No. 6,723,551). The virus particles were then administered to normal male mice (n=6) using a single dose of 200 microliter of 1.0el 1 total vector genomes of either AAV2/8 or AAV2/8.2 encoding the mouse albumin-specific ZFN. 14 days post administration of rAAV vectors, mice were sacrificed, livers harvested and processed for DNA or total proteins using standard methods known in the art. Detection of AAV vector genome copies was performed by quantitative PCR. Briefly, qPCR primers were made specific to the bGHpA sequences within the AAV as follows:
Cleavage activity of the ZFN was measured using a Cel-I assay performed using a LC-GX apparatus (Perkin Elmer), according to manufacturer's protocol. Expression of the ZFNs in vivo was measured using a FLAG-Tag system according to standard methods.
As shown in
The mouse specific albumin ZFNs were also tested for in vivo activity when delivered via use of a variety of AAV serotypes including AAV2/5, AAV2/6, AAV2/8 and AAV2/8.2. In these AAV vectors, all the ZFN encoding sequence is flanked by the AAV2 ITRs, contain, and then encapsulated using capsid proteins from AAV5, 6, or 8, respectively. The 8.2 designation is the same as described above. The SBS30724 and SBS30725 ZFNs were cloned into the AAV as described previously (Li et al., ibid), and the viral particles were produced either using baculovirus or a HEK293 transient transfection purification as described above. Dosing was done in normal mice in a volume of 200 μL per mouse via tail injection, at doses from 5e10 to 1e12 vg per dose. Viral genomes per diploid mouse genome were analyzed at days 14, and are analyzed at days 30 and 60. In addition, ZFN directed cleavage of the albumin locus was analyzed by Cel-I assay as described previously at day 14 and is analyzed at days 30 and 60.
As shown in
Example 3
Cell-based competition assay provides a robust, specific, linear assay to show differences in relative binding of Fc variants. FcRn-expressing cells were obtained by transient transfection of FcRn alpha and β2m. Cells were incubated at pH6.0 with dilutions of IgG and fixed concentration of fluorescently-labeled Fc (Fc-A488). Cell-bound fluorescence was read by FACS. The results are shown in
Top products related to «Transients»
More about "Transients"
These rapid, short-lived changes often arise in response to external stimuli or system disturbances, and can be seen in electrical circuits, mechanical systems, biological processes, and other complex systems.
Understanding and analyzing transients is crucial for optimizing system performance, ensuring safety, and advancing scientific discoveries.
Researchers can leverage AI-driven platforms like PubCompare.ai's Transient Comparison Platform to effortlessly locate and compare protocols from literature, preprints, and patents.
This enables the identification of the best approaches to enhance reproducibility and drive scientific breakthroughs.
The intelligent, data-driven comparisons provided by these platforms can help elevate research by facilitating seamless transient comparisons.
This can be particularly beneficial when working with commonly used laboratory reagents and techniques, such as Lipofectamine 2000, Lipofectamine 3000, FBS, Lipofectamine RNAiMAX, Lipofectamine 2000 reagent, DMEM, Opti-MEM, Dual-Luciferase Reporter Assay System, Penicillin/streptomycin, and FibroScan.
By harnessing the power of AI and data-driven analysis, researchers can propel their scientific discoveries forward, optimizing their workflows and enhancing the reproducibility of their findings.